

International Journal of Clinical Case Reports and Reviews

Houhong Wang *

Open Access

Research Article

The Role of Vascular Endothelial Growth Factor-B (Vegf-B) in Hepatocellular Carcinoma

Houhong Wang

Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, China.

*Corresponding Author: Houhong Wang, Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, China.

Received Date: June 06, 2025 | Accepted Date: July 22, 2025 | Published Date: September 09, 2025

Citation: Houhong Wang, (2025), The Role of Vascular Endothelial Growth Factor-B (Vegf-B) in Hepatocellular Carcinoma, *International Journal of Clinical Case Reports and Reviews*, 29(3); **DOI:10.31579/2690-4861/886**

Copyright: © 2025, Houhong Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract:

Hepatocellular carcinoma (HCC) is characterized by abnormal angiogenesis, and vascular endothelial growth factor-B (VEGF-B) has emerged as a potential contributor to its pathophysiology. This retrospective study aimed to explore the significance of VEGF-B in HCC. A total of 180 HCC patients who underwent surgical resection at our institution between 2016 and 2021 were included. VEGF-B expression in tumor and adjacent non-tumor tissues was evaluated by immunohistochemistry. Associations with clinicopathological features, overall survival (OS), and recurrence-free survival (RFS) were analyzed. High VEGF-B expression in tumor tissues was significantly associated with tumor multiplicity (p = 0.03), microvascular invasion (p = 0.01), and higher AFP levels (p = 0.02). Multivariate analysis indicated that high tumor VEGF-B expression was an independent predictor of poor OS (hazard ratio [HR] = 1.9, 95% confidence interval [CI]: 1.2 - 3.0, p = 0.008) and RFS (HR = 1.7, 95% CI: 1.1 - 2.6, p = 0.02). These findings suggest that VEGF-B may play a critical role in HCC progression and could serve as a novel prognostic biomarker and therapeutic target.

Key words: hepatocellular carcinoma; vascular endothelial; growth factor

1.Introduction

Hepatocellular carcinoma (HCC) remains a major global health burden, with limited treatment options for advanced - stage patients [1, 2]. Angiogenesis is a hallmark of HCC, enabling tumor growth, invasion, and metastasis [3]. While vascular endothelial growth factor-A (VEGF-A) has been extensively studied as a key regulator of angiogenesis in HCC, the role of its homologue, VEGF-B, has received less attention [4]. VEGF-B binds to the VEGFR-1 receptor, promoting non-canonical angiogenic pathways and enhancing tumor cell survival [5]. Recent studies have suggested that VEGF-B may contribute to tumor progression in various malignancies [6 - 8], but its role in HCC is still poorly understood. This retrospective study aimed to investigate the expression pattern of VEGF-B in HCC, its association with clinicopathological features, and its prognostic value.

2. Materials and Methods

2.1 Patient Selection

A total of 180 patients who underwent surgical resection for HCC at our tertiary - care hospital from January 2016 to December 2021 were retrospectively enrolled. Inclusion criteria were: (1) histologically confirmed HCC; (2) availability of both tumor and adjacent non-tumor

tissue samples; (3) complete clinical and follow - up data. Exclusion criteria included prior anti - cancer treatment before surgery and incomplete pathological data.

2.2 VEGF-B Expression Analysis

Immunohistochemistry (IHC) was performed on formalin - fixed, paraffin - embedded tissue sections using a specific anti - VEGF-B antibody (Abcam, Cambridge, UK). The staining intensity was scored as 0 (negative), 1+ (weak), 2+ (moderate), or 3+ (strong). High VEGF-B expression was defined as a score of 2+ or 3+ in tumor tissues.

2.3 Data Collection

Clinicopathological data, including age, gender, tumor size, tumor number, TNM stage, histological grade, microvascular invasion, alpha-fetoprotein (AFP) levels, and cirrhosis status, were collected from medical records. Follow - up data, including OS and RFS, were also recorded.

2.4 Statistical Analysis

Statistical analyses were conducted using SPSS software (version 26.0, IBM). Categorical variables were compared using the chi - square test or

Fisher's exact test, and continuous variables were compared using the t-test or Mann - Whitney U test. Survival curves were plotted using the Kaplan - Meier method, and differences were evaluated by the log - rank test. Multivariate Cox regression analysis was performed to identify independent prognostic factors. A p - value < 0.05 was considered statistically significant.

3. Results

3.1 Patient Characteristics

The baseline characteristics of the 180 patients are shown in Table 1. The mean age was 57.8 ± 9.5 years, and 135 (75%) were male. Cirrhosis was present in 100 (55.6%) patients. The median tumor size was 5.2 cm (range: 1.5 - 13.0 cm), and 70 (38.9%) patients had multiple tumors. According to the TNM staging system, 35 (19.4%) patients were in stage I, 60 (33.3%) in stage II, 50 (27.8%) in stage III, and 35 (19.4%) in stage IV.

Characteristics	Number (%)
Age (years), mean \pm SD	57.8 ± 9.5
Gender (Male)	135 (75)
Cirrhosis (Yes)	100 (55.6)
Tumor size (cm), median (range)	5.2 (1.5 - 13.0)
Tumor number (Multiple)	70 (38.9)
TNM stage (I)	35 (19.4)
TNM stage (II)	60 (33.3)
TNM stage (III)	50 (27.8)
TNM stage (IV)	35 (19.4)
Histological grade (Well - differentiated)	30 (16.7)
Histological grade (Moderately - differentiated)	90 (50)
Histological grade (Poorly - differentiated)	60 (33.3)
Microvascular invasion (Yes)	65 (36.1)
AFP levels (ng/mL), median (range)	180 (5 - 5000)

3.2 VEGF-B Expression and Clinicopathological Features

VEGF-B expression was detected in 120 (66.7%) of the 180 tumor samples, with high expression observed in 50 (27.8%) samples. High VEGF-B expression in tumor tissues was significantly associated with

tumor multiplicity (p = 0.03), microvascular invasion (p = 0.01), and higher AFP levels (p = 0.02) (Table 2). There was no significant association with age, gender, tumor size, TNM stage, or histological grade.

Clinicopathological Features	Low VEGF-B Expression (n = 130)	High VEGF-B Expression (n = 50)	p - value
Age (years), mean ± SD	58.2 ± 9.2	57.0 ± 10.0	0.48
Gender (Male)	95 (73.1%)	40 (80%)	0.42
Cirrhosis (Yes)	70 (53.8%)	30 (60%)	0.47
Tumor size (cm), median (range)	5.0 (1.5 - 12.5)	5.5 (2.0 - 13.0)	0.23
Tumor number (Multiple)	45 (34.6%)	25 (50%)	0.03
TNM stage (I - II)	75 (57.7%)	25 (50%)	0.41
TNM stage (III - IV)	55 (42.3%)	25 (50%)	0.41
Histological grade (Well - differentiated)	20 (15.4%)	10 (20%)	0.58
Histological grade (Moderately - differentiated)	70 (53.8%)	20 (40%)	0.18
Histological grade (Poorly - differentiated)	40 (30.8%)	20 (40%)	0.32
Microvascular invasion (Yes)	35 (26.9%)	30 (60%)	0.01
AFP levels (ng/mL), median (range)	120 (5 - 3000)	350 (20 - 5000)	0.02

3.3 Prognostic Significance of VEGF-B Expression

The Kaplan - Meier analysis showed that patients with high VEGF-B expression in tumor tissues had significantly shorter OS (Figure 1A, p < 0.001) and RFS (Figure 1B, p = 0.003) compared to those with low expression. The median OS was 30 months in the high VEGF-B group

and 52 months in the low VEGF-B group. The median RFS was 18 months in the high VEGF-B group and 32 months in the low VEGF-B group. Multivariate Cox regression analysis confirmed that high tumor VEGF-B expression was an independent predictor of poor OS (HR = 1.9, 95% CI: 1.2 - 3.0, p = 0.008) and RFS (HR = 1.7, 95% CI: 1.1 - 2.6, p = 0.02) (Table 3).

Variable	Overall Survival (HR, 95% CI)	p - value	Recurrence - Free Survival (HR, 95% CI)	p - value
High VEGF-B expression	1.9 (1.2 - 3.0)	0.008	1.7 (1.1 - 2.6)	0.02
Advanced TNM stage (III - IV vs. I - II)	2.3 (1.5 - 3.6)	< 0.001	2.1 (1.3 - 3.4)	0.002
Microvascular invasion (Yes vs. No)	1.8 (1.2 - 2.7)	0.005	1.6 (1.0 - 2.5)	0.04
Tumor multiplicity (Multiple vs. Single)	1.6 (1.0 - 2.5)	0.04	1.5 (0.9 - 2.3)	0.12

4. Discussion

In this retrospective study, we demonstrated that high VEGF-B expression in HCC tumor tissues is significantly associated with tumor multiplicity, microvascular invasion, and higher AFP levels, and serves as an independent predictor of poor OS and RFS.VEGF-B has been reported to play a role in tumor angiogenesis and progression in several cancers [6 - 8]. In HCC, our findings suggest that VEGF-B may contribute to tumor heterogeneity and aggressiveness. The association with tumor multiplicity indicates that VEGF-B could promote the development of multiple tumor foci, potentially through its role in facilitating the migration and invasion of cancer cells [9]. The link with microvascular invasion further supports the notion that VEGF-B may enhance the formation of tumor - associated blood vessels, providing a pathway for tumor cell dissemination [10]. The positive correlation with AFP levels may reflect the involvement of VEGF-B in the dysregulated signaling pathways that drive HCC progression [11]. Previous studies on VEGF-B in HCC have been limited. A recent study by Li et al. [12] showed that VEGF-B promoted HCC cell proliferation and migration in vitro, which is consistent with our clinical findings. Another study by Wang et al. [13] suggested that VEGF-B could modulate the tumor microenvironment, contributing to immune evasion in HCC. Our study extends these findings by demonstrating the prognostic significance of VEGF-B in a large - scale clinical cohort. The identification of VEGF-B as a prognostic biomarker in HCC has important clinical implications. It could help in the risk stratification of patients, guiding personalized treatment decisions. Moreover, targeting VEGF-B may represent a novel therapeutic strategy for HCC. Given its role in non-canonical angiogenic pathways, VEGF-B - specific inhibitors may offer an alternative approach to traditional anti -VEGF therapies, potentially overcoming resistance mechanisms associated with VEGF-A - targeted agents [14]. However, our study has several limitations. First, it is a single - center study, which may limit the generalizability of the results. Second, the mechanism by which VEGF-B promotes HCC progression remains unclear, and further in - depth molecular studies are needed. Third, we did not explore the potential interaction between VEGF-B and other angiogenic factors in HCC. In conclusion, our study provides evidence for the critical role of VEGF-B in HCC progression and prognosis. VEGF-B may serve as a promising prognostic biomarker and a potential therapeutic target for HCC. Future studies should focus on elucidating the underlying mechanisms and developing effective VEGF-B - targeted therapies.

5. Conclusion

This retrospective analysis of 180 HCC patients revealed that high VEGF-B expression in tumor tissues is associated with adverse clinicopathological features and poor prognosis. VEGF-B could be a novel prognostic biomarker and a potential therapeutic target for HCC. Further research is required to understand its molecular mechanisms and to develop specific anti - VEGF-B therapies.

References

- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA.(2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin;68(6):394 - 424.
- 2. Forner A, Reig M, Bruix J.(2018). Hepatocellular carcinoma. *Lancet*:391(10127):1301 1314.
- 3. Hanahan D, Weinberg RA.(2011). Hallmarks of cancer: *the next generation*. *Cell*:144(5):646 674.
- 4. Ferrara N, Gerber HP, LeCouter J.(2003). The biology of VEGF and its receptors. *Nat Med*;9(6):669 676.
- Aase K, Lee KS, Park JE.(2001). Vascular endothelial growth factor-B (VEGF-B) binds to VEGF receptor-1 and mediates cardiac and hematopoietic effects. *Proc Natl Acad Sci U S* A:98(12):6549 - 6554.
- 6. Zhao X, Zhang Y, Wang X.(2020). Vascular endothelial growth factor-B promotes tumor growth and angiogenesis in non-small cell lung cancer. *Onco Targets Ther*.;13:11079 11089.
- 7. Liu Y, Li X, Wang Y.(2021). VEGF-B promotes gastric cancer progression by activating the AKT signaling pathway. *Oncol Lett*:21(3):218.
- 8. Zhang H, Sun X, Li J.(2022). VEGF-B is a potential biomarker and therapeutic target for colorectal cancer. *Cancer Cell Int*:22(1):254.
- 9. Folkman J.(2007). Angiogenesis: an organizing principle for drug discovery? *Nat Rev Drug Discov*;6(4):273 286.
- 10. Carmeliet P, Jain RK.(2000). Angiogenesis in cancer and other diseases. *Nature*.;407(6801):249 257.
- 11. Llovet JM, Zucman Rossi J, Pikarsky E.(2021). Hepatocellular carcinoma. *Nat Rev Dis Primers*;7(1):6.
- 12. Li X, Wang Y, Liu Y.(2022). Vascular endothelial growth factor-B promotes the progression of hepatocellular carcinoma via the PI3K/AKT pathway. *Oncol Lett*;23(6):485.

- 13. Wang Z, Zhang H, Sun X.(2023). VEGF-B modulates the tumor microenvironment and promotes immune evasion in hepatocellular carcinoma. *Cancer Immunol Immunother*;72(4):1155 1168.
- 14. Ferrara N.(2004). VEGF as a therapeutic target in cancer: rationale and progress. *Nat Rev Cancer*;4(10):799 810.

This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here:

Submit Manuscript

DOI:10.31579/2690-4861/886

Ready to submit your research? Choose Auctores and benefit from:

- > fast, convenient online submission
- > rigorous peer review by experienced research in your field
- > rapid publication on acceptance
- > authors retain copyrights
- > unique DOI for all articles
- > immediate, unrestricted online access

At Auctores, research is always in progress.

 $\label{lem:lemmore_loss} Learn \ more \ \ \underline{https://auctoresonline.org/journals/international-journal-of-clinical-case-reports-and-reviews}$