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Abstract 

Water pollution poses a considerable threat to public health, and it is important to understand water pollution transmission 

dynamics.  This paper presents a mathematical framework involving bifurcation analysis and multiobjective nonlinear model 

predictive control (MNLMPC) for two models involving water pollution. Bifurcation analysis is a powerful mathematical tool 

used to address the nonlinear dynamics of any process. The MATLAB program MATCONT was utilized to conduct the 

bifurcation analysis of the water pollution models. Several factors must be taken into account, and multiple objectives must be 

achieved simultaneously. The MNLMPC calculations for the water pollution models were performed using the optimization 

language PYOMO in conjunction with the advanced global optimization solvers IPOPT and BARON. The bifurcation analysis 

revealed the presence of branch points in the two models. These branch points are advantageous as they allow the multiobjective 

nonlinear model predictive control calculations to converge to the Utopia point, which represents the most beneficial solution. 

The combination of bifurcation analysis and multiobjective nonlinear model predictive control for models involving water 

pollution is the main contribution of this paper. 
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Introduction 

Schwarzenbach et al. (2010) [1] investigated the connection between global 

water pollution and human health.  Shah et al. (2018) [2] performed optimal 

control studies for the transmission of water pollutants. Guo et al (2019) [3] 

worked on mathematical modelling and application for simulation of water 

pollution accidents. Bonyah et al (2021) [4] studied water pollution 

transmission. Issakhov et al (2023) [5], performed numerical modeling 

studies of water pollution by products of chemical reactions from the 

activities of industrial facilities at variable and constant temperatures of the 

environment.  Sabir et al (2023) [6] researched the numerical performance 

of the novel fractional water pollution model through the Levenberg-

Marquardt backpropagation method. Anjam et L (2023) [7] analyzed a 

fractional pollution model in a system of three interconnecting lakes. Yang 

et al (2023) [8] investigated the prediction and control of water quality in a 

recirculating aquaculture system based on hybrid neural network. Mousavi 

et al (2023) [9] performed system dynamics modeling for effective strategies 

in water pollution control: insights and applications.  Batabyal et al (2024) 

[10] compared the decentralized and centralized water pollution cleanup in 

the Ganges in a model with three cities. Ebrahimzadeh et al (2024) [11] 

studied the water pollution management through a comprehensive fractional 

modeling framework and optimal control Techniques. 

This paper aims to perform bifurcation analysis in conjunction with 

multiobjective nonlinear model predictive control (MNLMPC) for two water 

pollution models Shah et al (2018) [2] (Model 1) and Ebrahimzadeh et al 

(2024) [11] (Model 2). This paper is organized as follows. First, the model 

equations are presented.  The numerical procedures (bifurcation analysis and 

multiobjective nonlinear model predictive control (MNLMPC) are then 

described. This is followed by the results and discussion, and conclusions. 

Model equations  

For Model 1(Shah et al (2018) [2]), the model equations are  
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The base parameters are  

1 20.7; 0.18; 0.02; 0.3; 0.1; 0.4; 1 1;b u    = = = = = = =   

In this model, 2  is the bifurcation parameter and u1 is the control variable. 

For Model 2Ebrahimzadeh et al (2024) [11], the model equations are   
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Here wval represents the number of polluted water sources, sval is the water 

sources prone to pollution, ival is the water sources infected by pollutants, 

and tval describes the number 

of water sources that have been recovered from the insoluble class due to 

treatment. 

The base parameter values are uval is the bifurcation parameter and the 

control variable. 

 

Bifurcation analysis  

The MATLAB software MATCONT is used to perform the bifurcation 

calculations. Bifurcation analysis deals with multiple steady-states and limit 

cycles.  Multiple steady states occur because of the existence of branch and 

limit points.  Hopf bifurcation points cause limit cycles. A commonly used 

MATLAB program that locates limit points, branch points, and Hopf 

bifurcation points is MATCONT (Dhooge Govearts, and Kuznetsov, 

2003[12]; Dhooge Govearts, Kuznetsov, Mestrom and Riet, 2004[13]). This 

program detects Limit points (LP), branch points (BP), and Hopf bifurcation 

points(H) for an ODE system  
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 must be singular. At a Hopf bifurcation point,  

det(2 ( , )@ ) 0x nf x I =   (5) 

@ Indicates the bialternate product while 
nI  is the n-square identity matrix. 

Hopf bifurcations cause limit cycles and should be eliminated because limit 

cycles make optimization and control tasks very difficult.  More details can 

be found in Kuznetsov (1998[14]; 2009[15]) and Govaerts [2000] [16] 

Multiobjective Nonlinear Model Predictive Control (MNLMPC)  

Flores Tlacuahuaz et al (2012) [17] developed a multiobjective nonlinear 

model predictive control (MNLMPC) method that is rigorous and does not 

involve weighting functions or additional constraints. This procedure is used 

for performing the MNLMPC calculations Here 
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 ft  being the final time value, and n the total number of objective variables 

and. u the control parameter. This MNLMPC procedure first solves the single 

objective optimal control problem independently optimizing each of the 

variables 

0

( )
i f

i

t t

j i

t

q t
=

=

    individually.  The minimization/maximization of 

0

( )
i f

i

t t

j i

t

q t
=

=

  will lead to the values 
*

jq   .  Then the optimization problem 

that will be solved is  

0

* 2

1

min( ( ( ) ))

( , );

i f

i

t tn

j i j

j t

q t q

dx
subject to F x u

dt

=

=

=

−

=

 
    (7) 

This will provide the values of u at various times. The first obtained control 

value of u is implemented and the rest are discarded. This procedure is 

repeated until the implemented and the first obtained control values are the 

same or if the Utopia point where ( 

0
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obtained.  

Pyomo (Hart et al, 2017) [18] is used for these calculations.  Here, the 

differential equations are converted to a Nonlinear Program (NLP) using the 

orthogonal collocation method   The NLP is solved using IPOPT (Wächter 

And Biegler, 2006) [19]and confirmed as a global solution with BARON 

(Tawarmalani, M. and N. V. Sahinidis 2005) [20].  

The steps of the algorithm are as follows  
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3. Implement the first obtained control values  

4. Repeat steps 1 to 3 until there is an insignificant difference 

between the implemented and the first obtained value of the 

control variables or if the Utopia point is achieved. The 

Utopia point is when 

0
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Sridhar (2024) [21] proved that the MNLMPC calculations to converge to 

the Utopia solution when the bifurcation analysis revealed the presence of 

limit and branch points. This was done by imposing the singularity condition 

on the co-state equation (Upreti, 2013) [22]. If the minimization of 1q  lead 
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to the value 
*
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MNLPMC calculations will minimize the function 
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The Utopia point requires that both 
*
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the optimal control co-state equation (Upreti; 2013) [25] is  
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i  is the Lagrangian multiplier. ft  is the final time.  The first term in this 

equation is 0 and hence  
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( ) 0i

d

dt
   and ( ) 0i

d

dt
   . In between there is a vector [ ]i  where 

( ) 0i

d

dt
 =  . This, coupled with the boundary condition ( ) 0i ft =  will 

lead to  [ ] 0i =  This makes the problem an unconstrained optimization 

problem, and the only solution is the Utopia solution. 

Results and Discussion 

 For model 1, the bifurcation analysis with 2  as the bifurcation parameter, 

revealed the existence of a branch point at (wval, sval, ival, 2  ) values of 

(1.75, 0, 0, 1.0303). This is shown in Fig. 1. 

 
Figure 1: Bifurcation analysis for model 1 
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subject to the equations governing the model. This led to a value of zero (the 

Utopia solution.   The MNLMPC control value of obtained for u1 is was 

0.284338. The various MNLMPC profiles are shown in Figures 2-5. The 

MNLMPC calculations converged to the Utopia solution, validating the 

analysis by Sridhar (2024) [21], which demonstrated that the presence of a 

limit point/branch point enables the MNLMPC calculations to reach the 

optimal (Utopia) solution.  

When bifurcation analysis was performed on Model 2, with uval is 

bifurcation parameter, two branch points were obtained at (wval, sval, ival, 

tval,uval ) values of  ( 2.0, 0.0, 0.0, 0.0 -1.1650 ) and (3.33; -0.88, 0.0, -0.44, 

-1.1383). This is shown in Fig. 6. For the MNLMPC calculations,  
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subject to the equations governing the model. This led to a value of zero (the 

Utopia solution.   The MNLMPC control value of obtained for uval was 

0.11714. The various MNLMPC profiles are shown in Figures 7-11. The 

MNLMPC calculations converged to the Utopia solution, validating the 

analysis by Sridhar (2024) [21], which demonstrated that the presence of a 

limit point/branch point enables the MNLMPC calculations to reach the 

optimal (Utopia) solution. 
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Figure 2: MNLMPC for model 1 sval vs t 

 

Figure 3: MNLMPC for model 1 wval vs t 

 
Figure 4: MNLMPC for model 1 ival vs t 
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Figure 5: MNLMPC for model 1 u1 vs t 

 
Figure 6: Bifurcation analysis for model 2 

 

Figure 7: MNLMPC for model 2 sval vs t 
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Figure 8: MNLMPC for model 2 wval vs t 

 

Figure 9: MNLMPC for model 2 ival vs t 

 
Figure 10: MNLMPC for model 2 tval vs t 
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Figure 11: MNLMPC for model 2 uval vs t 

Conclusions 

Bifurcation analysis and Multiobjective nonlinear model predictive control 

calculations were performed on two water pollution models. The bifurcation 

analysis revealed the existence of a branch points in both models. The branch 

points (which causes multiple steady-state solutions from a singular point) 

are very beneficial because they enable the Multiobjective nonlinear model 

predictive control calculations to converge to the Utopia point (the best 

possible solution) in the models.  A combination of bifurcation analysis and 

Multiobjective Nonlinear Model Predictive Control (MNLMPC) for 

dynamic models involving water pollution is the main contribution of this 

paper. 
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