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Abstract 

Neuromodulators are chemicals that alter the activity of neural networks. They can have -immediate or delayed 

effects on neurons, affecting their properties at both nearby and distant synapses. Neuromodulators can influence 

neurons in various ways, allowing even small neural Networks generate a diverse range of functional outcomes. 

This diversity is crucial for the flexibility and adaptability of neural functions, including sensory processing.  
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Introduction 

Neuromodulators are chemicals that alter the activity of neural networks. 

They can have -immediate or delayed effects on neurons, affecting their 

properties at both nearby and distant synapses. Neuromodulators can 

influence neurons in various ways, allowing even small neural Networks 

generate a diverse range of functional outcomes. This diversity is crucial 

for the flexibility and adaptability of neural functions, including sensory 

processing.  

Serotonin is a widely conserved signaling molecule that influences 

various sensory systems across different species(1-3). It plays a crucial 

role in regulating states such as arousal, mood, and motivation (4-7). 

Serotonergic neurons, similar to other modulatory neurons, can influence 

a cell’s activity without needing to form a direct synapse with it (8, 9). 

Sensory systems gather and process environmental information to create 

a internal representation of external world. Nevertheless, these systems 

must adapt to changes in the environment and the animal's internal state. 

This review aims to discuss how serotonin, a specific neuromodulator, 

influences sensory processing. 

Serotonnin as a modulator of sensory systems 

Serotonin's effects on sensory systems have been extensively studied 

across different species and sensory modalities, making it an prime 

example for illustrating fundamental principles of neuromodulation. The 

sensory processing can modulated by serotonergic system in various 

behavioral scenarios. This influence can be complex and specific to 

particular stimuli(13). The diverse characteristics of serotonergic neurons 

allow serotonin to modulate sensory processing in a nonuniform and 

complex manner. This means that serotonin's effects can vary widely 

depending on the specific neurons and contexts involved.  

Moreover, while the specific receptors involved are not fully understood, 

serotonin has been shown to reduce activity in proprioceptor and 

mechanosensory networks(14, 15). On the other hand, this 

neuromodulator also can increase excitability of photoreceptors by 

stimulation of 5-HT receptors (16-18), and sensitize these sensory 

afferents more than baseline. The influence of serotonin in V1, possibly 

via interactions with other neuromodulatory systems (19-23), might 

therefore aid visual processing during periods of quiet vigilance. This 

influence works by decreasing the spiking response gain to prevent an 

obvious orienting reaction in the animal, which is consistent with 

previously observed effects of serotonin in suppressing the acoustic startle 

response (24). 

In early visual processing of cat, significantly reduced responses were 

observed after serotonin was applied iontophoretically in the lateral 

geniculate nucleus (LGN) (10) and V1 area of rat brain (11). In a more 

recent study involving awake macaques, where serotonin was 

iontophoretically applied and compared with the effects of pH-matched 

saline application, an overall reduction in sensory responses due to 

serotonin was observed (12). 

Diversity of serotonergic neurons 

DRN neurons have diverse pathways through which they send signals to 

other parts of the brain. Besides serotonin, these neurons can contain other 

neurotransmitters. The inherent electrical and chemical properties of these 

neurons vary. DRN neurons receive inputs from various sources, adding 

to their diversity. The genes expressed in these neurons differ, 

contributing to their functional diversity (13). Anatomical projections of 

Serotonergic system are heterogeneous, and this can reveal various 
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functional aspects within specific sensory systems. For example, 

serotonergic neurons do not distribute evenly across the insect visual 

system; instead, they selectively innervate different layers within each 

visual neuropil.(25-30).  

Likewise, the extent of serotonergic innervation differs both intranuclear 

and internuclear in rodent auditory nuclei, such as those in the superior 

olive and the inferior colliculus. (31-33). Collectively, these facts 

demonstrate the diverse nature of serotonergic projections to networks 

that involved in sensory processing. This variability precise targeting of 

different processing layers or stimulus-specific subcircuits. Recent 

advances in technology have shown that subsets of serotonergic neurons 

are diverse in their molecular and anatomical characteristics(34-39). To 

investigate subsequent changes in V1, it is important to consider the 

extensive topographic organization within the DRN (40). Activation of 5-

HT neurons may not only directly affect V1 but also modulate other 

cortical and subcortical regions that could, in turn, influence V1 activity 

(41). Moreover, it's important to note that, in addition to 5-HT neurons, 

some subpopulations of neurons that release glutamate in the raphe nuclei 

also express ePet. (42, 43). 

Receptor Foundations of serotonergic Modulation  

Serotonergic neurons themselves exhibit considerable diversity, and this 

is mirrored in the variety of serotonin receptors (5-HTRs). These 

receptors differ in their serotonin affinity, duration of action, and the 

secondary messenger systems they engage (44). The earliest 5-HTR 

appeared approximately over 500 million years ago (3), and vertebrates 

have seven primary 5-HTR families (5-HT1–7), while invertebrates 

possess at least three families (5-HT1, 2, and 7)(45). 

Types of serotonin  synapses and receptors involved in sensory 

modulation 

Serotonergic projections to primary sensory areas are characterized by 

small, varicose axons that are broadly extented (46).The number of 

synaptic specializations, which are typically asymmetric, is minimal (47), 

indicating that serotonin primarily operates through bolus transmission 

from these varicosities. Although, there is ongoing debate regarding the 

reliance of neuromodulatory systems on "wired" transmission—highly 

localized and typically synaptic—or "volume" transmission, which is 

more spatially diffuse(48-51).  

In the mammalian brain, seven serotonin receptor families, each with 

multiple subtypes, have been identified, contributing to the functional 

diversity of serotonin(52). While a comprehensive review of all receptors 

is beyond this scope, a few key receptors are worth noting. The 5-HT1A 

receptor is found on pyramidal neurons of cortex (53). In the primary 

visual cortex of macaques, the 5-HT1B and 5-HT2A receptors are most 

densely expressed, particularly in layer 4 (54), The 5-HT1B receptor is 

also highly expressed in the LGN but shows weak expression in other 

cortical regions, such as the auditory and somatosensory cortices (54). 

 In mice, GABAergic neurons that have the 5-HT3A receptor do not 

express the calcium-binding proteins parvalbumin or somatostatin, 

suggesting they may form a unique group of inhibitory interneurons (55). 

In anesthetized macaques, when examining the impact of the two most 

prominently expressed receptors in primary visual area, 5-HT1B and 5-

HT2A, using receptor-specific ligands, researchers observed various 

pattern of reciprocal modulation for these receptors (54). In one study 

researchers found that when 5-HT was iontophoretically applied to the 

visual cortical area of wakeful primates, it primarily reduced the gain of 

evoked responses at the population level while leaving ongoing activity 

unchanged.(12).  

This distinct effect of 5-HT on gain response  has been linked to the 

selective activation of 5-HT2A receptors (56) through several approaches, 

such as the subcutaneous injection of a hallucinogenic 5-HT2A receptor 

agonist in mice (57). The findings suggest that 5-HT induces separate 

inhibition of evoked and ongoing activity, influencing the gain of both in 

a divisive manner. simultaneous iontophoretic application of specific 

antagonists for 5-HT1A and 5-HT2A receptors (58-62) suggests that these 

receptors play distinct roles in regulating inhibition rate of ongoing and 

evoked network activity, respectively (63). 

The findings demonstrates that activation of the serotonergic system 

influences two aspects of network activity in the visual cortex (V1): 

ongoing and evoked responses, with both being affected in a distinct and 

divisive manner. Each component is modulated through separate 

inhibitory effects of the 5-HT1A and 5-HT2A receptors, respectively. 

many studies in primary visual cortex, which used specific agonists for 5-

HT1B and 5-HT2A receptors in combination with single-unit recordings 

in anesthetized monkeys, found bi-directional modulation depending on 

instantaneous firing rates. When a 5-HT2A agonist was applied, neurons 

with strong responses were suppressed, while those with weaker 

responses were facilitated, whereas the opposite occurred with the 

application of a 5-HT1B receptor agonist(54, 64). 

Oppositely, the divisive scaling of stimulus driven responses is likely due 

to the dominant activation of excitatory 5-HT2A receptors, as inhibiting 

these receptors significantly lessened the inhibition of the evoked 

component. Furthermore, 5-HT2A receptors are linked to the Gq/11 

signaling pathway (65), which typically increases neuronal firing rather 

than reducing it. This reduction in activity may be mediated by 

GABAergic neurons, which in turn decrease the activity of pyramidal 

neurons (66).  

In fact, divisive modulation of responses in visual cortex has been shown 

to significantly depend on the activation of soma-targeting parvalbumin-

expressing interneurons ((67), although other studies suggest differing 

roles (68, 69) for neurons that predominantly express 5-HT2A receptors 

(70, 71).  

Activation of 5-HT2A receptors may also induce depolarizing currents in 

pyramidal neurons, leading to shunting inhibition, which increases 

conductance and affects both the gain and time constant of neuronal 

responses (72). 

In two studies, selective activation of 5-HT2A receptors consistently 

produced a strong suppressive effect on the gain of visually evoked 

population responses (57, 73), despite cell-type and layer-specific 

differences across single cells (57). These findings support our current 

observations that DRN-triggered scaling of evoked responses is mediated 

by cortical 5-HT2A receptors at the population level. They also suggest 

that the distribution of a single neurotransmitter receptor type, or 

"receptome," can account for a distinct function in sensory processing 

(74-79). While 5-HT2A receptors regulate response gain, the scaling of 

ongoing V1 activity triggered by the DRN appears to be primarily 

controlled by 5-HT1A receptors (11). 

Bidirectional interactions between serotonergic systems and sensory 

systems 
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Serotonergic neurons both influence sensory circuits and receive inputs 

from them. This bidirectional interaction allows the impact of serotonin 

on sensory processing to be modulated according to the sensory inputs the 

animal encounters.(45). This reciprocal interaction enables sensory 

networks to adjust to varying stimulus state. Fr example, some studies 

demonstrate that signal-to-noise ratio can altered by serotonin (11, 80, 

81), which helps maintain stable stimulus representation even in a noisy 

environment. Sensory input to serotonergic neurons can lead to specific 

modifications in serotonin release. This means that the release of 

serotonin can be tailored to the specific sensory stimuli being 

experienced. In certain instances, first sensory neurons and serotonergic 

cells are identical, enabling the sensory field to directly trigger releasing 

of serotonin (11, 80-87). 

Sensory Stimulus-Driven Serotonin Release 

Many serotonergic neurons, in addition to projecting to both sensory and 

nonsensory regions (36, 37, 88), also receive inputs from sensory systems. 

In certain cases, these neurons can acquire sensory input locally within 

the very networks they modulate. For example, in Drosophila and moths, 

CSDn activity is affected by odors (89-92) through direct synaptic 

connections with antennal lobe principal neurons (91, 93-95). The pattern 

of local input to a single neuron can differ across sensory networks, as 

CSDns can be both stimulated and suppressed by the same odor due to 

local synaptic inputs targeting various neuronal compartments. (90).  

Serotonergic neurons in the DRN and MRN also receive inputs from 

various cortical and subcortical sensory areas, such as the inferior and 

superior colliculi and brainstem sensory nuclei (96, 97). Morevere, these 

neurons are responsive to stimuli across various sensory modalities (98-

102). Although the strongest sensory responses are often found in 

nonserotonergic raphe neurons, serotonergic neurons themselves have 

been shown to be responsive to sensory inputs (103-105), and 

nonserotonergic DRN neurons may relay indirect sensory input to 

serotonergic neurons. Furthermore, some sensory responses in 

serotonergic DRN neurons exhibit very short latencies, suggesting input 

from early stages of sensory processing (103). Consequently, whether 

they are confined to a single network or span multiple networks, 

serotonergic neurons, by having close access to the history of network 

activity, can adjust their modulatory effects based on the current stimulus 

or circuit state (106). 

Serotonergic Neurons Adjust Based on Behavioral State and Context 

The circumstances surrounding serotonin release are multifaceted, 

encompassing both dependent and independent stimulus state. Researches 

shows that serotonergic neurons react to sensory stimuli but are also 

affected by factors like internal states, movement, and the importance of 

sensory events in relation to past experiences. This implies that serotonin 

helps transmit information to sensory systems regarding both the external 

environment and the internal conditions in which sensory events happen 

(45). 

By using varying stimulus intensities, the normalization of visual 

responses was identified. In anesthetized animals, the ongoing activity 

contributed to response normalization by acting as a subtractive factor. 

However, in the awake state, normalization was governed by the gain of 

the evoked response and was independent of any concurrent suppression 

of ongoing activity. 

Inhibition tends to dominate activity in the awake cortex (107), possibly 

alongside elevated 5-HT levels (108, 109). Consequently, since the 

inhibition of baseline activity depends on initial baseline levels, the 

additional impact of the spontaneous part on normalization in the 

anesthetized condition could be due to significant fluctuations in its 

amplitude, which are less common during wakefulness (107). As a result, 

the extent of serotonin-regulated integration of sensory input and Baseline 

activity dependent to cortical condition and baseline levels of serotonin, 

and this seems to be predominantly controlled by 5-HT1A receptors 

(110). 

In summary, the interplay between 5-HT1A and 5-HT2A receptors leads 

to a notable and significant adjustment in both spontaneous and evoked 

components of population activity in V1. One key observation is that the 

inhibition of gain modulation induced by 5-HT is more pronounced in the 

anesthetized condition compared to the awake state. This suggests that, 

while awake, response normalization depends less on spontaneous 

activity and is less affected by internal cortical signals.  

Given that spontaneous activity reflects top-down expectations, whereas 

Neural responses to stimuli provide bottom-up sensory information, any 

imbalance in the activation of these receptors—whether due to specific 

agonist application or irregular receptor expression—can disrupt the 

integration of these components and thus affect cortical information 

processing. Such an imbalance could lead to an excessive focus on 

internally generated expectations(111, 112) at the expense of sensory 

input, or the reverse (113). 

Serotonergic Modulation of Sensory Computations 

Sensory systems use various strategies to dynamically adjust the range of 

individual stimulus features they encode. Given the widespread presence 

of serotonergic systems, it's unsurprising that serotonin either modulates 

or directly participates in these processes. For example, as animals move 

through their environment, they encounter fluctuations in stimulus 

intensity. In situations where sensory input is intense (such as bright light 

or strong odors), neurons may struggle to properly encode the stimulus 

due to saturation. On the other hand, when stimuli are at low intensities, 

such as the faint scent of a predator, animals may fail to detect them. To 

address these challenges, sensory systems typically employ a range of 

computations, including "gain control" (72), which adaptively adjusts the 

input-to-output ratio of a network. Across different sensory modalities, 5-

HT receptors (5-HTRs) expressed by sensory afferents enable direct 

serotonergic modulation of sensory input gain(45). 

Serotonin can decrease the signal-to-noise ratio by reducing evoked 

activity more than spontaneous activity (11) The concept of serotonergic 

modulation of population codes is relatively recent, and further research 

in this area could help bridge the gap between the effects of monoamines 

on neural codes and sensory-related behaviors (114). This modulation 

involves a reduction in retinotectal transmission mediated by 5HT1B 

receptors selectively expressed by optic afferents, though postsynaptic 

5HT1A receptors may also contribute to a decline in responsiveness 

(115). 

In macaque V1, gain changes are the most frequently reported modulatory 

effect. Both acetylcholine (ACh) and serotonin (and likely 

norepinephrine, NA) modify gain in some way; however, studies vary 

(and possibly the systems themselves) in terms of how many neurons are 

suppressed versus enhanced. Other reviews have presented studies on 

ACh and serotonin (12, 54), that report conflicting findings regarding the 
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dominance of enhancement versus suppression across neurons. Notably, 

serotonin does not alter rate variability or noise correlations in macaque 

V1 (12). 

The reported effects of serotonin on sensory processing have been 

inconsistent(11, 54, 113, 114, 116) making it difficult to develop a 

straightforward computational explanation. However, studies showed that 

across the neuronal population in V1 and across different stimulus 

dimensions, serotonergic modulation is surprisingly simple: serotonin 

primarily reduces the gain of visual responses, with minimal impact on 

tuning properties.  Results suggest that serotonin is well-suited to 

controlling the response gain of neurons in V1, potentially 

complementing existing gain control mechanisms.  

Across various visual stimulus dimensions, serotonergic modulation was 

uniformly characterized by a reduction in response gain, a slight slowing 

of response dynamics, and no systematic changes in neuronal variability, 

co-variability, or stimulus selectivity.  

These effects could be captured by a model in which serotonin induces a 

simple additive change in the threshold-linear spiking nonlinearity. 

Overall, the observed modulation was homogeneous, resulting in a 

straightforward decrease in response gain across the neural population 

(12). Such gain modulation is an essential aspect of cortical computation 

(117) allowing responses to be modulated without altering receptive field 

properties, and making it well-suited to adjust responses according to the 

animal’s internal state, influenced by the context's valence (118). 

The inhibitory effect of serotonin was the predominant pattern observed 

across the large neuronal population. This reduction was mainly attributed 

to a multiplicative change (gain change) in the neuronal tuning curves 

(119). Behaviorally, a recent study that administered a serotonin-reuptake 

inhibitor to enhance serotonin's effect during a color discrimination task 

in macaques found that reaction times slowed and perceptual performance 

deteriorated (120), consistent with the expected outcome of reduced 

visual responses.  

On the other hand, a reduction in the gain of spontaneous responses (113), 

aligns with an increased signal-to-noise ratio (SNR), or a reduction in the 

gain of tuning curves (116). 

The mechanisms and nature of how specific populations of 

neuromodulatory inputs influence sensory processing content remain 

largely unclear.  

Studies shown that Serotonin can modulate the transmission of early 

visual information within critical regions, such as the dorsolateral 

geniculate nucleus (dLGN) (121, 122), the suprachiasmatic nucleus (123, 

124), and the superior colliculus (115), in addition to its effects on early 

olfactory and auditory information (116, 125). 

Serotonergic modulation of retinal processing  

Specifically, in vitro pharmacological administering high dosage of 

serotonin or it’s agonists has been shown to reduce retinal axon 

stimulation-evoked glutamate release via presynaptically expressed 5-

HT1B receptors (121-123). However, it remains uncertain whether 

"endogenous" serotonin release significantly modulates the activity of 

mouse retinal axonal boutons in vivo, and if this modulation is selective 

for particular retinal axons.  

An Study indicates that serotonin preferentially suppresses retinal 

ganglion cell (RGC) axonal boutons with high baseline activity that 

respond to full-field stimuli. This selective suppression by serotonin may 

alter the tuning of the postsynaptic cell toward smaller, more localized 

stimuli, similar to what has been observed in zebrafish(126). 

 In fact, electrical stimulation of the dorsal raphe nucleus (DRN) 

selectively diminishes evoked activity in thalamocortical neurons with 

large receptive fields (127), which aligns with observations of stronger 

suppression of full-field boutons. Also slow fluctuations in serotonin 

release within the dLGN, a small fraction of which could be attributed to 

a weak anti-correlation with arousal levels (128). The behavioral contexts 

that drive these serotonin fluctuations are still largely unknown, as are the 

roles of serotonergic suppression of retinothalamic transmission in 

shaping downstream visual processing and behavior (128). However, 

while serotonin preferentially suppresses RGC axons that are strongly 

responsive to full-field luminance changes, arousal more selectively 

suppresses boutons that are more responsive to localized stimuli. This 

suggests the intriguing possibility that serotonergic axons and other 

modulatory inputs may implement multiple, complementary, state-

dependent selective filters for specific visual information channels at a 

critical bottleneck in the pathway, before these channels reach 

thalamocortical neurons and are further relayed and amplified in brain 

regions responsible for guiding behavior and learning (128).  

Serotonergic modulation of visual processing by various receptors  

The 5-HT1B receptor has been shown to influence neurotransmission in 

various pathways, including the retinocollicular (129) retino-

suprachiasmic nuclear (123), and thalamocortical (130) pathways. Given 

the increased expression of 5-HT1B and 5-HT2A receptor genes in V1, it 

is plausible that these two receptors play significant roles in modulating 

neurotransmission in this region (54). 

Activity-dependent expression of 5-HT1B receptor mRNA has also been 

observed in the LGN. To determine the time needed for monocular 

inactivation to take effect, shorter durations of monocular inactivation (1 

day, 6 hours, and 3 hours) were examined. The downregulation of 5-

HT1B and 5-HT2A receptor mRNAs in V1 was detected even after just 3 

hours of monocular inactivation. These findings suggest that the specific 

expression patterns of 5-HT1B and 5-HT2A receptor mRNAs in V1 are 

maintained by ongoing visual activity. Consequently, it is speculated that 

5-HT1B agonist (CP93129) mainly facilitated visual responses in V1 

neurons, although it tended to suppress neurons with low firing rates. This 

example illustrates that activation of 5-HT1B receptors enhances 

responses to high-contrast (>30%) stimulation but is either suppressive or 

ineffective for low-contrast stimuli. The results indicate that the effect of 

the 5-HT1B receptor agonist is contingent on each neuron's response level 

and that it improves the signal-to-noise ratio of visual input from the LGN 

to the cortex (54). 

In vivo electrophysiological experiments demonstrated that 5-HT1B and 

5-HT2A agonists modulate V1 neuron responses in macaque monkeys. 

This analysis revealed that 5-HT2 agonist (DOI) facilitates visual 

responses in neurons with low firing rates but suppresses those with high 

firing rates (54) . 

They conclude that 5-HT2A receptors exhibit response-dependent 

modulatory effects, but their effects are opposite to those of 5-HT1B 

receptors. Then, they indicate that the laminar distributions of the effects 

of 5-HT1B agonist (CP93129), DOI, and 5-HT2A antagonist (ketanserin). 

This contrasts with the highly layer-specific distribution of 5-HT1B and 

5-HT2A receptor mRNAs (54). 
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Seeburg et al.(122)  shown that each receptor can exert both suppressive 

and facilitative effects depending on the firing rate of the recorded 

neurons. Regarding the 5-HT1B receptor, similar context-dependent 

bidirectional modulation has been observed in vitro using brain slices 

containing the optic tract and LGN (122) or the ventral posterior medial 

nucleus of the thalamus and somatosensory cortex (130). For instance, 

Seeburg et al. in 2004 (122) found that 5-HT1B receptor-mediated 

serotonergic modulation of LGN neuron responses to optic tract 

stimulation depends on the stimulus's temporal frequency.  

The 5-HT1 receptor agonist suppresses retinogeniculate transmission for 

low-frequency inputs but is either ineffective or facilitative for high-

frequency inputs. The authors suggested that alleviation of synaptic 

depression due to high-frequency stimulation might underlie these effects 

of the 5-HT1B receptors. 

 On the other hand, activation of 5-HT2A receptors is known to exert 

direct facilitatory actions on pyramidal neurons and interneurons (131, 

132), indirectly inhibiting neighboring pyramidal neurons (133-135). 

Thus, serotonin likely has complex effects by regulating the relative 

activity of excitatory and inhibitory neurons within local circuits through 

5-HT1B and 5-HT2A receptors (54). 

Serotonin release in V1 could be locally regulated by 5-HT1B 

autoreceptors on the presynaptic terminals of raphe neurons that project 

to V1 or potentially by prefrontal cortex activity (136). Therefore, 

serotonin's cortical effects likely depend on the dynamic regulation of its 

levels and receptors. Although the enhanced expression of 5-HT1B 

receptor mRNA in the LGN and V1 suggests its primary role in the visual 

system, it is also widely expressed in the thalamus. In a study, it was 

demonstrated that activating 5-HT1B receptors in V1 generally enhances 

visual responses but tends to suppress weak responses. This suggests that, 

in geniculocortical transmission, non-synchronized spontaneous activity 

(noise) from LGN neurons is reduced by 5-HT1B receptor-mediated 

suppression, while visually evoked synchronized signals are preserved or 

efficiently transmitted to V1, thereby enhancing the signal-to-noise ratio 

in the input-output relationship. 

 Conversely, neurons in V1's input layers, which express the 5-HT2A 

receptor abundantly, may act as gain controllers by enhancing weak signal 

responses and suppressing excessive responses. Therefore, we suggest 

that serotonin release in V1 exerts coordinated modulatory effects through 

5-HT1B and 5-HT2A receptors on V1 neurons. It is thus possible that the 

serotonin system has contributed to the evolution of the primate visual 

system's sophisticated function (54). 

In a study, it was investigated visual processing and experience-

dependent learning in SERT-deficient mice. They did not find significant 

alterations in orientation, spatial frequency, and contrast tuning in naive 

mice, consistent with a previous operant conditioning study that found 

intact learning in visual discrimination tasks in SERT-deficient mice 

(137). Additionally, compensatory mechanisms may partially correct for 

the lack of functional SERT to maintain cortical development (138). 

However, they observed a lack of bias toward cardinal orientations in V1 

of SERT-deficient mice before visual experience, which partially 

recovered in SERT heterozygous mice after perceptual experience but not 

in knockout animals. Observations of prolonged oscillatory activity 

following perceptual experience in SERT-deficient mice further support 

the hypothesis that 5-HT may play a role in cortical plasticity. They also 

found decreased orientation selectivity and broadened orientation tuning 

in SERT knockout mice. Interestingly, these changes resemble those seen 

in Fmr1 knockout mice, which are known to result from hypoactivation 

of parvalbumin-positive fast-spiking interneurons and corresponding 

circuit alterations (139, 140). 

Heterogenous actions of serotonin on interneurons in visual cortex 

It is interesting that serotonergic modulation of inhibitory neurons is cell-

type specific. Xiang and Prince (141) suggest that serotonergic activation 

exerts complex influences on cortical inhibitory networks, potentially 

leading to alterations in cortical information processing (141). The impact 

of serotonin (5-HT) on the excitability of two cortical interneuron 

subtypes, fast-spiking (FS) and low-threshold spiking (LTS) cells, as well 

as on spontaneous inhibitory postsynaptic currents (sIPSCs) in layer V 

pyramidal cells, was examined in rat visual cortical slices using whole-

cell recording methods (141). It was observed that the application of 5-

HT induced excitation in half of the FS cells and a small portion of LTS 

cells, while it caused inhibition in roughly half of the FS cells and the 

majority of LTS cells. In a few FS and LTS cells, serotonin application 

triggered excitation followed by inhibition (141). 

Serotonergic modulation of spatial attention and receptive field  

Patel et al. (142) explore the effects of serotonergic modulation on local 

network processing in the primary visual cortex (V1) of awake macaques. 

Their research provides valuable insights into how serotonin influences 

sensory processing, drawing parallels with the effects of spatial attention. 

The authors highlight that serotonin application leads to a reduction in 

local field potential (LFP) power and spike-field coherence, indicating 

decreased functional connectivity within the local network.  

This reduction in synchronization is thought to enhance the signal-to-

noise ratio, thereby improving the efficiency of sensory processing. 

Interestingly, these effects mirror those observed with spatial attention, 

suggesting that serotonin may play a similar role in modulating sensory 

inputs. 

Patel et al.(142) propose that serotonin's modulation of V1 contributes to 

a state of "quiet vigilance," where the brain remains alert but less reactive 

to distracting stimuli. This state is beneficial for maintaining focus on 

relevant visual inputs while minimizing the impact of irrelevant stimuli 

that this mechanism allows for a more stable and focused perception, 

which is crucial for tasks requiring sustained attention. The study also 

discusses the broader implications of serotonergic modulation across 

different sensory modalities.  

The authors speculate that the effects observed in V1 might extend to 

other sensory systems, highlighting serotonin's role in fine-tuning sensory 

processing and maintaining perceptual stability. This cross-modal 

influence underscores the importance of serotonin in optimizing sensory 

perception and attention. Their study provides valuable evidence that 

serotonin, much like spatial attention, can shape sensory experiences by 

modulating local network dynamics. This insight is crucial for our 

understanding of how neuromodulators influence sensory modalities, 

particularly vision. 

Serotonin (5-HT) generally diminished the effectiveness of synaptically 

mediated excitation and inhibition, resulting in a reduction or complete 

loss of neuronal responsiveness to visual stimuli. Regarding the effects of 

5-HT on receptive field characteristics, a simple difference in threshold 

versus subthreshold synaptic inputs appears insufficient to explain cases 

where the area of the visual field that could activate a cell significantly 
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changed during 5-HT application. The reduction in evoked response 

magnitude observed in many instances could be attributed to the 

suppressive influence of 5-HT. However, the observed shift in the 

receptive field within visual space, likely involves a more intricate 

reconfiguration of synaptic balances that establish receptive field 

boundaries (11). Serotonin (5-HT) inhibits stimulus-evoked neuronal 

firing in the sensory regions of the cerebral cortex (11, 143, 144), while 

having a lesser impact on the background activity of these neurons. 

Additionally, 5-HT reversibly modifies the receptive fields of visual 

cortical neurons, causing a shift in the visual field towards the temporal 

zone(11). 

Future directions: 

Serotonergic system seems to be one of complicated brain modulatory 

systems. Different kind of serotonin receptors, difference in serotonergic 

neurons properties and non-homogenous projection to different sensory 

areas, are some of the complex aspects of this system. Considering role 

of before mentioned factors in various time points of visual processing in 

a cell-type and layer/area specific manner in multiple aspects of vision are 

necessary. These studies would be possible by more advanced 

neuroscience techniques with micro/nano meter spatial resolution and 

micro/nano second temporal reolution of recording of activities of many 

neurons, in multiple areas of animal brain, in vivo.  
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