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Abstract 

Background: Around 30% of critical limb ischemia (CLI) patients are not eligible for the current medical treatments. 

One of the benefits of vascular c-Kit signaling is to induce therapeutic arteriogenesis. The present review summarizes the 

effects of c-Kit signaling in endothelial nitric oxide synthase (eNOS)/ nitric oxide (NO) pathway during arteriogenesis in 

a hindlimb ischemia scenario.  

Methods: A systematic review was performed following an electronic search of PubMed, Embase, ClinicalTrials.gov and 

Cochrane databases. Manuscripts published in the English language until January 2023 were identified and selected based 

on the vascular c-Kit and eNOS/NO signaling in neovascularization on both, animal models and cell culture assays. 

Results: The importance of c-Kit in the vascular system has been shown under physiology and pathological condition. 

Known that Ischemia leads to hypoxic environment driving the neovascularization process through endothelial sprouting 

and new capillaries formation. c-Kit is up-regulated during this process and the majority of the studies demonstrate the 

angiogenic role of this receptor and its ligand in cancer. However, the role of c-Kit in ischemia diseases, specifically in 

arteriogenesis during hindlimb ischemia has been observed. Further, the effects of c-Kit in NO pathway that has also been 

reported, could explain, at least in part, the molecular mechanism involving c-Kit in arteriogenesis.    

Conclusion: Recent evidence shown the beneficial role of vascular c-Kit in arteriogenesis and the impact of c-Kit 

deficiency in the dysfunction of NO signaling; however, the available scientific data on this topic is still scarce. Further 

studies to deeply investigate whether vascular c-Kit/eNOS/NO signaling play a major role in arteriogenesis are still needed 

to provide important new insight on the treatment of CLI. 

Keywords: transmembrane receptor tyrosine kinase; niric oxide; arteriogenesis 

Introduction 

Peripheral arterial disease (PAD), a common occlusive disease which affects 

around 8.5 million people in the United States(Allison et al., 2007), is among 

the leading causes of morbidity worldwide(Norgren et al., 2007). PAD is 

characterized by a narrowed or occluded artery, which leads to ischemia of 

the lower limb(Criqui & Aboyans, 2015), and eventual critical limb ischemia 

(CLI)(Rutherford et al., 1997). CLI is defined by ischemia pain rest, 

gangrene (tissue loss) and amputation, which indicates the dysfunction of the 

neovascularization process in maintaining minimal blood flow recovery 

(Stoyioglou & Jaff, 2004). Treatment options for PAD/CLI patients are 

usually limited to traditional surgery bypass, endovascular revascularization, 

or limb amputation(Norgren et al., 2007). However, bypasses and 

endovascular procedures are not recommended for patients with 

comorbidities, sepsis/limb gangrene, or inappropriate vascular anatomy, 

which represents a minimum of 30% of the patients with CLI(Norgren et al., 

2007). Consequently, the comprehensive knowledge about 

neovascularization has led studies to develop new targets as a therapeutic 

approach to mitigate the deleterious effects of PAD/CLI(Heil et al., 2004). 

Recent publications studied the molecular mechanisms of arteriogenesis in 

an attempt to develop therapeutic approaches for PAD/CLI(Grundmann et 

al., 2007; Schirmer et al., 2009; Schirmer & van Royen, 2014). c-Kit is a 

tyrosine kinase receptor, which has been extensively studied in the oncologic 

scenario as an angiogenic molecule(Stankov et al., 2014), and has been 
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shown to play a beneficial effect against hindlimb ischemia by improving 

arteriogenesis and blood flow recovery(Bosch-Marce et al., 2007). The c-Kit 

receptor is also involved in other pathological conditions such as 

atherosclerosis(Wang et al., 2007) and inflammation (Dentelli et al., 2007; 

König et al., 1997). For a long time it was even considered a marker of stem 

cells(Ashman, 1999) and was utilized in cardiac cell therapy strategies 

(Vagnozzi et al., 2019). However, recently, c-Kit has been identified as a 

marker of cardiac endothelial differentiation(Li et al., 2008; Liu et al., 2016) 

and its expression in vascular cells has also been confirmed(Hollenbeck et 

al., 2004; Matsui et al., 2004). Moreover, c-Kit deficiency has been shown 

to impair endothelial nitric oxide synthase (eNOS)/ nitric oxide (NO) 

function(Hernandez et al., 2019), one of arteriogenesis’ essential signaling 

pathways. In this review we explore experimental advancements of the 

potential axis associated with vascular c-Kit signaling – eNOS/NO pathway 

appears to emerge as a potential therapeutic mechanism to improve 

arteriogenesis during hindlimb ischemia.  

Methods 

Eligible studies  

A systematic search of the experimental evidence on the role of vascular c-

Kit/eNOS/NO signaling in neovascularization was performed in PubMed, 

Embase, ClinicalTrials.gov and Cochrane databases were carried out by two 

independent investigators. References of related reviews were also added 

manually. The key terms used: “Ischemia” AND “c-Kit” AND “Nitric 

Oxide” AND “neovascularization” OR “arteriogenesis” OR “angiogenesis”. 

Primary research studies included for comparison involve animal, cell 

culture, as well as human subjects. The last search update was performed on 

January 2023. 

Inclusion and exclusion criteria  

Studies were selected following inclusion criteria 1) evaluation of the c-Kit 

transmembrane association eNOS signaling in the neovascularization; 2) 

studies focusing on mechanism of animal model or cell culture or case-

control study. Comments and editorial were used such as exclusion criteria. 

Important reviews involving c-Kit are discussed where applicable in order to 

keep the review complete, but not compiled in the data tables.   

Data extraction  

Two independents investigators performed data extraction. We assessed 

study methodology, the role of c-Kit and eNOS/NO signaling pathway in 

arteriogenesis, and the relevance of the ischemic environment. Studies were 

screened based on 1) title, abstract fitting the applicable inclusion criteria. 2) 

a full-text analysis using same inclusion criteria. Duplicate articles and 

publishing not original article were excluded.   

Characteristics of studies  

A total of 33 articles were screened from Pubmed [16], Embase [4], 

ClinicalTrials.gov [1], Cochrane [0], and other sources [12] (Figure 1). The 

characteristics of each study are shown in Table 1 and 2.  
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Table 1: Characteristics of studies on regulation of signaling c-Kit pathways. 
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Table 2: Literature on c-Kit signaling and nitric oxide interaction. 

Results  

c-Kit receptor  

Structure  

c-Kit is a transmembrane receptor tyrosine kinase which has essential 

properties as a regulator of growth, differentiation, migration, and 

proliferation in the hematopoietic cell(Lennartsson et al., 2005). Previous 

studies show that the major cognate ligand for KIT(145-KD transmembrane 

glycoprotein) is the stem cell factor (SCF)(Ashman, 1999), responsible for 

its activation and function, which causes receptor dimerization and 

autophosphorylation(Lennartsson et al., 2005).  

Initially, the viral oncogene vc-Kit was identified, followed by sequencing 

and its homologue, c-Kit, in which mutations in the identified steel factor 

demonstrate that stem cell factor is the cognate ligand for KIT(Lennartsson 

et al., 2005). Structurally, c-Kit is a member of the platelet-derived growth 

factor (PDGF) family of kinases. It is composed of five immunoglobulin-

like motifs in the extracellular portion, and of a 70-100 residue hydrophilic 

kinase insert domain, which forms its intracellular portion(Li et al., 2008). 

The intracellular part of c-Kit starts with the juxtamembrane region, which 

holds great importance for regulation of c-Kit kinase activity. The kinase 

domain consists of two subdomains, tyrosine kinase domain one and two, 

which are interrupted by a kinase insert sequence. As mentioned, c-Kit is 

expressed in cells from hematopoietic, germ cell and melanoblast 

lineages(M.-S. Kim et al., 2008), suggesting that its signaling is highlighted 

by the nervous system, placenta, heart, lung and kidney in the median of 

pregnancy(Lennartsson & Rönnstrand, 2012). c-Kit is also expressed in 

several other bone marrow populations and in the vascular bed(Hollenbeck 

et al., 2004). Its activation depends on either dimerization or oligomerization 

of monomeric receptor molecules(Lemmon & Schlessinger, 2010), which 

occur quickly, with dimers being detected only minutes after the addition of 

the ligand(V. C. Broudy et al., 1998). For a review on the structure, 

regulation, and splicing of the c-Kit protein and/or mRNA expression, see 

Reference(Lennartsson & Rönnstrand, 2012). 

c-Kit regulation, function, and its effect on vasculature 

The inappropriate expression or activation of c-Kit is associated with a 

variety of human diseases. Markers of progenitor cells, c-Kit positive cells, 

differentiate into blood and/or vascular endothelial cells, playing an 

important role in the amplification and mobilization of these specialized 

cells(Matsui et al., 2004). c-Kit participates in vital functions of the human 

body, including fertility, homeostasis, and melanogenesis; as expected, the 

global c-Kit knockout mice are not viable(Lennartsson & Rönnstrand, 2012; 

Waskow et al., 2002) c-Kit downstream signaling has been studied in several 

different systems. In one report, the c-PKC mediated the phosphorylation of 

the endogenous c-Kit receptor on serine 746, resulting in decreased overall 

tyrosine phosphorylation of c-Kit upon steel factor stimulation, showing that 

this specific feedback mechanism of c-PKC mediated phosphorylation of the 

c-Kit receptor has consequences for both proliferation and survival of HSC-

like cell lines(Edling et al., 2007). This receptor also appeared to regulate a 

variety of vital cellular processes such as differentiation, proliferation 

survival, metabolism, motility, migration, and maturation of the cells(V. 

Broudy et al., 1994).  

Regarding the vasculature, c-Kit and SCF are both present in vascular cells, 

including smooth muscle cells (SMCs)(Lennartsson & Rönnstrand, 2012) 

and endothelial cells (ECs)(Matsui et al., 2004). Additionally, it has been 

shown to play a critical role in hematopoiesis, cancer, atherosclerosis(Song 

et al., 2019) and angiogenesis. The relationship of c-Kit and vascular system 

is observed under normal physiology and pathological conditions. In cancer 

tumors, SCF/c-Kit signaling participates in the maintenance of the 

vasculature. Hypoxia-inducible factor (HIF)-1α is observed as a mediator in 

the expression of SCF in response to hypoxia and epidermal growth 

factor(Han et al., 2008). However, since the stimulation of c-Kit ligand is 

also known to stabilize and upregulate HIF-1α(Pedersen et al., 2008), a 

positive feedback loop is preferred in this situation, potentially contributing 
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to tumor angiogenesis even in the absence of hypoxia. The majority of tumor 

cells shown aberrant expression of c-Kit and/or Kit ligands(Turner et al., 

1992), which when inhibited by c-Kit antibodies attenuates tumor growth by 

blocking angiogenesis(Fang et al., 2012).  

In the heart, c-Kit positive cells expressing the lysine transferase Setd4, 

induced an increase in capillaries of neonatal and adult mice. The authors 

showed that Setd4 regulates the quiescence of c-Kit positive cells through 

the PI3K-Akt-mTOR signaling pathway via H4K20me3; leading to cardiac 

improvement after myocardium infarction through neovascularization(Xing 

et al., 2021). Although initial reports had treated c-Kit positive cells 

essentially as stem cells, especially in the heart where they can become 

myocardial, endothelial, or smooth muscle cells(Molkentin & Houser, 2013; 

Sultana et al., 2015), recent studies provide elegant approaches, suggesting 

that c-Kit positive cells in murine hearts are actually an important population 

of endothelial cells(Nadal-Ginard et al., 2014; Sultana et al., 2015; Van Berlo 

et al., 2014). The importance of c-Kit in neovascularization has also been 

analyzed by using heterozygous c-Kit mutant mice. When the bone marrow 

of c-Kit mutant mice is replaced with wild type cells it leads to an 

improvement of the infarcted myocardium due to the angiogenic cytokines 

environment(Fazel et al., 2006).  

In vitro assays also revealed the substantial importance of SCF in human 

EPCs activity through the c-Kit receptor. Interestingly, the SCF-induced 

increase in neovascularization activity was substantially greater in EPCs 

compared to human umbilical vein endothelial cells (HUVECs). This high 

responsiveness of EPCs to SCF was explained by the finding that the cell-

surface expression of c-Kit is greater in EPCs than in HUVECs(K. L. Kim 

et al., 2011). Altogether, the reported data confirmed the importance of 

SCF/c-Kit signaling to the neovascularization process, primarily during 

angiogenesis, but also during arteriogenesis in limb ischemia. 

Signaling pathway leading to eNOS/NO, c-Kit, and 

arteriogenesis  

Limb Ischemia and Neovascularization 

Peripheral artery disease is often caused by accumulation of atherosclerotic 

plaques. Aging(Curb et al., 1996), smoking(Willigendael et al., 2005), 

hypercholesterolemia(KROON et al., 1995), diabetes(Gerald et al., 1992), 

hypertension(WINSOR, 1950), and chronic kidney disease(Liew et al., 

2008) risk factors contribute to worsening of symptoms. CLI is secondary to 

severe stenosis/occlusion of arteries due to deficient compensatory 

angiogenesis and arteriogenesis. Arteriogenesis is the process of growth and 

enlargement of pre-existing collaterals that can function as natural bypasses. 

This process along with hypoxia mediated sprouting of new capillary 

networks (angiogenesis)(Carmeliet, 2000)  ensure sufficient blood to the 

ischemic tissue after stenosis. Similar to the coronary reserve, effective 

arteriogenesis is essential to those human ischemic limbs that require a large 

volume of blood through pre-existing collaterals. Moreover, PAD patients 

who develop arteriogenesis efficiently are less likely to progress to CLI. 

Therefore, an effective therapy to enhance arteriogenesis would represent a 

much-needed alternative to protect the limbs of patients at risk of CLI and 

its devastating consequences.   

The Role of Nitric Oxide Pathway in Arteriogenesis 

Arteriogenesis is a complex, multifactorial process that involves endothelial 

activation, inflammation and vascular cells proliferation. During the adaptive 

response to ischemia there is a decrease in blood pressure distal to the 

occlusion, leading to augmentation of shear stress inside the collateral 

arteries, now used as a new route for the blood to reach lower 

extremities(Pipp et al., 2004). The increased shear stress in the collaterals 

leads to an upregulation of adhesion molecules in the endothelium (such as 

I-CAM and V-CAM)(Scholz et al., 2000), which attract and activate 

leukocyte (specially monocytes(Heil et al., 2002) and lymphocytes(Stabile 

et al., 2003)), and their trans-endothelial migration. Together, the activated 

endothelium and the cytokines released by monocytes (such as TNF-α and 

VEGF) increase the chemotaxis of additional monocytes to the collateral site, 

resulting in proliferation of ECs and SMCs(Heil et al., 2006; Shizukuda et 

al., 1999). This process increases endothelial nitric oxide synthase (eNOS) 

which leads to greater production of NO-induced vasodilation. The 

vasodilation occurs once NO is diffused into vascular smooth muscle cells 

and initiates the NO/cGMP pathway. Activation of soluble guanylate cyclase 

generates cGMP, thereby activating protein kinase G. This process decreases 

cytoplasmic calcium, leading to smooth muscle cell relaxation(Denninger & 

Marletta, 1999). 

NO is a major contributor to arteriogenesis during two distinct moments, 

after an arterial occlusion and after an increase in shear stress. Following an 

arterial occlusion, as an initial response to the ischemic environment, NO-

mediated vasodilation occurs temporarily, leading to increased perfusion of 

collaterals. This perfusion creates an enhanced endothelial wall shear stress, 

which activates flow-sensitive potassium channels, which promotes the 

calcium influx that induces NO release(Cooke et al., 1991). In response to 

high shear stress, endothelial cells cultured under flow conditions show 

increased eNOS expression and NO release(Fisslthaler et al., 2000). 

Moreover, research has shown that the diameter of collaterals and blood 

perfusion in the ischemic limb is significantly reduced in eNOS−/− and L-

NAME treated mice, subjected to femoral artery ligation(Park et al., 2010).  

Xuming Dai et al suggests that eNOS deficiency results in reduced density 

of native collaterals, remodeling and perfusion after ligation, presenting a 

greater ischemia area(Dai & Faber, 2010). Yu et al(Yu et al., 2005) and 

Lloyd et al(Lloyd et al., 2005) demonstrated reduced post-ischemic 

arteriogenesis as eNOS activity is blocked, concluding that eNOS is required 

for post-ischemic blood flow recovery and arteriogenesis in a mouse model 

of hindlimb ischemia. Similarly, inhibition of eNOS has been shown to 

inhibit various types of vascular remodeling, migration and proliferation of 

endothelial cells. 

In the arteriogenesis process, other vasoactive substances (i.e. bradykinin 

and prostacyclin) and several growth factors such as PDGF, bFGF, TGF-β 

and VEGF are similarly stimulated by shear stress. While the VEGF receptor 

is one of the major tyrosine kinase receptors involved in arteriogenesis(Lloyd 

et al., 2005) other tyrosine receptors such as c-Kit also seems to be involved 

in this process. 

Effects of c-Kit in Arteriogenesis 

Recent studies on hindlimb ischemia animal models have demonstrated the 

role of c-Kit in arteriogenesis. According to Bosch-Marce et al(Bosch-Marce 

et al., 2007), c-Kit loss-of-function decreases the expression of angiogenic 

cytokines, and impairs the blood flow recovery after hindlimb ischemia 

surgery. It is also reported that global c-Kit mutant mice have impaired blood 

flow recovery and arteriogenesis after limb ischemia(Hernandez et al., 

2018). Moreover, the greater expression c-Kit after arterial injury in 

SMCs(Hollenbeck et al., 2004) and in the ischemic limb in comparison to 

non-ischemic limb after a femoral artery occlusion further suggests a major 

role of c-Kit in vascular injury and arteriogenesis. However, the mechanism 

by which c-Kit can improve arteriogenesis during hindlimb ischemia is still 

unknown. Due to involvement of c-Kit positive bone marrow cells in the 

arteriogenesis process, bone marrow transplantation using wild type cells in 

c-Kit global mutant mice were performed to test whether the impaired 

arteriogenesis of the mutant mice was caused by the loss of c-Kit in the bone 

marrow. Interestingly, the data suggested that the impaired arteriogenesis in 

the c-Kit mutant mice was actually associated with loss of vascular c-Kit. 

Evidence for this showed that the bone marrow transplantation did not 

interfere with the poor outcomes in blood flow recovery and collateral 

remodeling of c-Kit mutant mice. Furthermore, neither the greater ischemic 

tissue damage nor foot dysfunction observed in these mutant mice were 

alleviated by bone marrow transplantation. These data together indicated that 

vascular c-Kit signaling is a requisite for preventing tissue necrosis and 

proper arteriogenesis. 

Effects of c-Kit in eNOS/NO Pathway 
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It is known that several different mechanisms can generate nitric oxide, 

involving enzymatic and non-enzymatic pathways. The enzymatic 

production of NO by eNOS is one of the most studied and most relevant 

pathways associated with vasodilatation. However, the various ways to 

generate NO by other non-classical pathways, reflect the complexity of the 

activation and interaction process. Regarding vasculature, eNOS activity 

involves protein-protein interactions, post-translational regulations, and 

serine/threonine phosphorylation(Dudzinski & Michel, 2007). There are 

multiple extracellular stimuli that regulate eNOS function and control NO 

bioactivity in the vessel wall(Dudzinski & Michel, 2007). Although the 

activation of eNOS/NO pathway and the role of NO in arteriogenesis are 

already described in the literature, recent evidence suggests that c-Kit might 

affect this pathway and as well as improve arteriogenesis. These findings 

suggest that the beneficial effects of c-Kit in arteriogenesis could potentially 

occur through the eNOS/NO pathway.  

A very interesting study from Kim et al.(J. Y. Kim et al., 2014) demonstrated 

that SCF binding to c-Kit in ECs results in the activation of multiple 

downstream signaling molecules including NO generation. c-Kit activation 

stimulated NO synthesis via phosphoinositide 3-kinase/Akt-dependent 

eNOS activation, inducing vascular permeability. In other words, SCF 

enhances endothelial permeability by increasing eNOS-mediated NO 

production. Moreover, the inhibition of eNOS using inhibitors or small 

interfering RNA decreased the capacity of SCF to increase endothelial 

permeability. Further, our group(Hernandez et al., 2019)  using mesenteric 

arteries from c-Kit deficient (KitW/W-v) and littermate control (Kit+/+) 

mice, measured vascular reactivity by a pressure myography and 

demonstrated the dysfunction of NO-mediated relaxation in c-Kit deficient 

SMCs. We also observed higher blood pressure in c-Kit deficient mice 

(compared to control) when fed a high salt diet, which was associated with 

the c-Kit/sGC pathway that leads to impaired NO signaling in c-Kit 

deficiency. Another interesting study Chen et al.(Chen et al., 2017) 

demonstrated that SCF/c-Kit signaling in the endothelium led to local 

endothelin-3 (ET3) synthesis and secretion in ECs. After bind in its receptor, 

ET3 increases cellular Ca2+ leading eNOS/NO activation. The authors 

concluded that the c-Kit-ET3-NO axis leads to vasodilation maintaining 

vascular homeostasis(Chen et al., 2017). These data together suggest that c-

Kit influences eNOS/NO-mediated vasodilation in a positive manner which 

could interfere with developmental remodeling of pre-existing collaterals.  

Perspectives and conclusion  

This review summarizes the importance of eNOS/NO pathway and c-Kit for 

arteriogenesis during limb ischemia. While NO is a potent vasodilator 

activated by shear stress and responsible for increased blood flow through 

collaterals, loss of vascular c-Kit impairs blood flow recovery, collateral 

remodeling, and consequently induces tissue damage and foot dysfunction. 

Herein, we also discussed the few studies that reported the link between c-

Kit and the eNOS/NO pathway, demonstrating the potential benefits of c-Kit 

in a functional eNOS/NO pathway. 

In conclusion, we believe that, at least in part, the potential mechanism by 

which c-Kit influences a proper arteriogenesis is through the activation of 

eNOS/NO pathway, however, further investigations are required to 

specifically identify the entire mechanism and confirm that the effect of c-

Kit in the NO pathway leads to greater arteriogenesis. Lastly, this axis c-Kit 

– eNOS/NO – arteriogenesis is largely unexplored, and could be a potential 

therapeutic opportunity to enhance compensation of major arterial occlusion 

and further prevent the progression to critical limb ischemia.  

Limitations  

The present study gives an overview of mechanism available involving c-Kit 

and nitric oxide in neovascularization specially during limb ischemia. Some 

limitations should be reported since this article focus in the local effects of 

c-Kit in the vasculature without discussing the data that shows c-Kit as a 

marker of stem cells. Further, most of the literature that reports the effects of 

c-Kit in neovascularization is related to tumor angiogenesis, which was not 

the focus of this review; wherefore myocardial ischemia was considered 

here. The major limitation in the systematic review was the crossing of the 

MeSH terms “c-Kit in arteriogenesis”, and “c-Kit in the eNOS/NO 

pathway”. Therefore, the axis- c-Kit-eNOS/NO pathway - arteriogenesis is a 

novel concept in particular for clinical investigation. However, we believe 

that this is an important topic that needs further investigation. 
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