

Mathematical Methods in Engineering

Serge Perrine

Open Access

Research Article

Construction of Cohn Triples and Applications

Serge Perrine

Rue du Bon Pasteur, 57070 Metz, France.

Corresponding author: Serge Perrine, Rue du Bon Pasteur, 57070 Metz, France.

Received Date: July 01, 2022; Accepted Date: September 17, 2022; Published Date: April 01, 2023

Citation: Serge Perrine. (2023). Construction of Cohn Triples and Applications. *J. Mathematical Methods in Engineering*, 4(1): Doi:10.31579/2690-0440.2022/012

Copyright: © 2023 Serge Perrine, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Cohn triples of matrices and their links with the theory of free groups of rank were discovered in 1955 by Harvey Cohn. A lot of consequences were developed for the modular group $SL(2, \mathbb{Z})$ and the free subgroup F_2 In the present article, we deal with a new construction of such triples and resulting Diophantine equations.

Key words: cohn triples; fricke relations; fibonacci numbers

Contents

1 Introduction.	3
2 A new construction of the Cohn triples.	4
3 Links with the Fibonacci numbers	9
4 Final result for the free group with two generators	. 14
Acknowledgments	16
References	16

Introduction

We deal in the present article with the Markoff spectrum M as defined by [1]. The minimum m(f) of an indefinite binary quadratic form

$$f(x, y) = ax^2 + bxy + cy^2$$

with real coefficients and positive discriminant $\, \Delta(f) = b^2 - 4ac \,$ is

$$m(f) = \inf |f(x, y)|,$$

where the infimum is taken over all the pairs of integers x, y not both zero. The set of values $m(f)/\sqrt{\Delta(f)}$ is defined as being the *Markoff* spectrum M.

· With the reduction of the form f to f_j , we have the possibility of computing the values m(f) with doubly infinite sequences

$$(\cdots,a_{-i},\cdots,a_{-1},a_0,a_1,\cdots,a_i,\cdots).$$

We have

$$\xi_{j} = [a_{j}, a_{j+1}, ..., a_{2j}, ...] > 1,$$

$$-1 < \xi_{j}' = -(1/\eta_{j}) = -[0, a_{j-1}, a_{j-2}, ..., a_{0}, ...] < 0,$$

$$(\lambda_{j})f_{j}(x,y) = \lambda_{j}(x - \xi_{j}y)(x - \xi_{j}'y), \quad \xi_{j} = a_{j} + \frac{1}{\xi_{j+1}}, \quad \xi_{j}' = a_{j} + \frac{1}{\xi_{j+1}'},$$

$$\frac{2}{L_{j}} = \xi_{j} - \xi_{j}', \inf_{j \in \mathbb{Z}} \left(\frac{L_{j}}{2}\right) = m(f_{j}) / \sqrt{\Delta(f_{j})} = C(f_{j}) = C(f) = m(f) / \sqrt{\Delta(f)}.$$

We go from ξ_{j+1} to ξ_j , and from ξ_{j+1} to ξ_j with 2×2 matrix with integer coefficients. Its determinant is often 1, but it will be possible to find another value -1 for the determinant of our matrices, and corresponding to a matrix of $GL(2,\mathbb{Z})$. More important, we will use the transpose of

$$M_2 = \begin{bmatrix} 3\gamma & -1 \\ 1 & 0 \end{bmatrix}$$
, $M_1 = M_2^T$ transpose of M_2 , $\gamma \in \mathbb{N}^*$ fixed parameter.

Also $M_1, M_2 \in SL(2, \mathbb{Z})$ (modular group) when $\det M_2 = 1$. When multiplied, these matrices yield

$$(-M_2^{-1})(-M_1) = -\begin{bmatrix} 1 & 0 \\ 6\gamma & 1 \end{bmatrix}, \quad (-M_1)(-M_2^{-1}) = -\begin{bmatrix} 1 & -6\gamma \\ 0 & 1 \end{bmatrix}.$$

Transposing the second equality and adding it to the first one, we find a relation similar to the Heisenberg relation:

$$(M_2^{-1})(M_1) + (M_1^{-1})(M_2) = -2 \times 1_2.$$

In what follows, we generalize the computations made by Cohn [6], [7], [8], in à set of articles trying to approach Markoff's forms through modular functions:

$$(M_1^{-1})(M_2^{-1})(M_1)(M_2) = \begin{bmatrix} 36\gamma^2 + 1 & 6\gamma \\ 6\gamma & 1 \end{bmatrix}.$$
 (1)

We see that the trace of the last commutator is not a multiple of 3. So we try to generalize the result quoted in the mémoire [9], saying that **Property 1.** – For two matrices $A, B \in SL(2, \mathbb{Z})$, the following are equivalent:

1/ The couple (A, B) generates the free group $F_2 = [SL(2, \mathbb{Z}\mathbb{Z}), SL(2, \mathbb{Z}\mathbb{Z})]$ in $SL(2, \mathbb{Z})$,

2/ The triple ((tr(A)/3,(tr(B)/3,(tr(AB)/3))) is a solution of the Markoff equation $x^2 + y^2 + z^2 = 3xyz$.

3/ We have $tr([A,B]) = tr(ABA^{-1}B^{-1}) = -2$.

Moreover, if (A, B) is another generating system for \mathbf{F}_2 , the free group generated by (A, B), there exists one and only one $N \in GL(2,\mathbb{Z}) = \{M \mid 2 \times 2 \text{ integer matrix and } \det M = \pm 1\}$ up to a sign, verifying the conditions

$$A' = NAN^{-1}, B' = NBN^{-1},$$

if and only if we have

$$((tr(A)/3),(tr(B)/3),(tr(AB)/3)) = ((tr(A')/3),(tr(B')/3),(tr(A'B')/3)).$$

Proof. See [17] (Chap. 6). Prop. 4.1 page 170 for $1 \Rightarrow 2$ Prop. 4.3 page 174 for $2 \Rightarrow 1$. Also [9] (Chap. 6). Prop. 6.0.1 page 57 for $1 \Rightarrow 2$, Prop. 6.0.2 page 57 for $2 \Rightarrow 1$. The equivalence $2 \Leftrightarrow 3$ is a consequence of the formula of Fricke (FR1) ([17] page 160). For the remaining part: ([17] Chap. 6. prop. 5.1 page 175). W

- 2 A new construction of the Cohn triples
- 2.1 Initial attempt to build a Cohn triple

We could choose, in order to have $ABC = 1_2$.

$$B = M_1^{-1} M_2^{-1} = \begin{bmatrix} 1 & -3\gamma \\ -3\gamma & 9\gamma^2 + 1 \end{bmatrix}, \quad A = M_1 = \begin{bmatrix} 3\gamma & 1 \\ -1 & 0 \end{bmatrix},$$

$$C^{-1} = M_2^{-1} = AB = \begin{bmatrix} 0 & 1 \\ -1 & 3\gamma \end{bmatrix}, BA = \begin{bmatrix} 6\gamma & 1 \\ -18\gamma^2 - 1 & -3\gamma \end{bmatrix}.$$

But this gives for C and A the same trace, which is limited enough, and a trace of B not a multiple of 3. Also:

$$ABC = M_1 M_1^{-1} M_2^{-1} M_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1_2.$$

$$CBA = M_2 M_1^{-1} M_2^{-1} M_1 = \begin{bmatrix} 36\gamma^2 + 1 & 6\gamma \\ 6\gamma & 1 \end{bmatrix}.$$

$$(M_2)(M_1^{-1})(M_2^{-1})(M_1) = (M_1^{-1})(M_2^{-1})(M_1)(M_2).$$

2.2 Successful consequences of the definitive choice

We keep $C=M_2$ and put $AB=A^{\bullet}B^{\bullet}=C^{\bullet-1}=C^{-1}$, two matrices being built with A^{\bullet} and B^{\bullet} , the matrices to be determined. Let us write, with $\varepsilon=\pm 1$ and $\theta\in \mathbb{Z}$, and compute, where the interesting cases seem to be $\theta\neq 0$:

$$A^{\bullet}B^{\bullet}C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, CB^{\bullet}A^{\bullet} = \begin{bmatrix} \varepsilon & \theta \\ 0 & \varepsilon \end{bmatrix}.$$

We start with

$$B^{\bullet}A^{\bullet} = \begin{bmatrix} 3\gamma & -1 \\ 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \varepsilon & \theta \\ 0 & \varepsilon \end{bmatrix} = \begin{bmatrix} 0 & \varepsilon \\ -\varepsilon & 3\gamma\varepsilon - \theta \end{bmatrix}.$$
$$A^{\bullet}B^{\bullet} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3\gamma & -1 \\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 3\gamma \end{bmatrix} = C^{-1} = M_2^{-1}.$$

As $tr(B^{\bullet}A^{\bullet}) = tr(A^{\bullet}B^{\bullet})$, we have, because we suppose $\theta \neq 0$ and $\varepsilon = \pm 1$:

$$3\gamma\varepsilon - \theta = 3\gamma$$
, hence $\varepsilon = -1$ and $\theta = -6\gamma$.

We can give new parameters defining A^{\bullet} , and new ones defining B^{\bullet} :

Refining
$$A$$
, and new ones defining B :
$$B^{\bullet}A^{\bullet} = \begin{bmatrix} t & u \\ v & w \end{bmatrix} \begin{bmatrix} k & l \\ m & n \end{bmatrix} = \begin{bmatrix} kt + mu & lt + nu \\ kv + mw & lv + nw \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 3\gamma \end{bmatrix} = M_1^{-1}.$$

$$A^{\bullet}B^{\bullet} = \begin{bmatrix} k & l \\ m & n \end{bmatrix} \begin{bmatrix} t & u \\ v & w \end{bmatrix} = \begin{bmatrix} kt + lv & ku + lw \\ mt + nv & mu + nw \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 3\gamma \end{bmatrix} = M_2^{-1}.$$

We write these two equations in dimension 4 and invert the matrices, after defining δ and verifying that

$$\delta = \det CA^{\bullet} = \det \begin{bmatrix} 3\gamma & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} k & l \\ m & n \end{bmatrix} = kn - lm = \det A^{\bullet} \in \{\pm 1\},$$

$$1 = \det C^{-1} = \det A^{\bullet}B^{\bullet} = \delta \det B^{\bullet}, \quad \det B^{\bullet} = \delta \in \{\pm 1\}.$$

$$(B^{\bullet}A^{\bullet}) : \begin{bmatrix} kt + mu \\ kv + mw \\ lt + nu \\ lv + nw \end{bmatrix} = \begin{bmatrix} k & m & 0 & 0 \\ 0 & 0 & k & m \\ l & n & 0 & 0 \\ 0 & 0 & l & n \end{bmatrix} \begin{bmatrix} t \\ u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 3\gamma \end{bmatrix},$$

$$\delta \begin{bmatrix} t \\ u \\ v \\ v \end{bmatrix} = \begin{bmatrix} n & 0 & -m & 0 \\ -l & 0 & l & 0 \\ 0 & n & 0 & -m \\ 0 & -l & 0 & l \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \\ 3v \end{bmatrix} = \begin{bmatrix} m \\ -l \\ n - 3m\gamma \\ 2kv - l \end{bmatrix}.$$

$$(A^{\bullet}B^{\bullet}): \begin{bmatrix} kt + lv \\ mt + nv \\ ku + lw \\ mu + nw \end{bmatrix} = \begin{bmatrix} k & 0 & l & 0 \\ m & 0 & n & 0 \\ 0 & k & 0 & l \\ 0 & m & 0 & n \end{bmatrix} \begin{bmatrix} t \\ u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 1 \\ 3\gamma \end{bmatrix},$$

$$\delta \begin{bmatrix} t \\ u \\ v \end{bmatrix} = \begin{bmatrix} n & -l & 0 & 0 \\ 0 & 0 & n & -l \\ -m & k & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} l \\ n - 3l\gamma \\ -k \end{bmatrix}.$$

Now we solve:

$$\begin{bmatrix} m \\ -k \\ n-3m\gamma \\ 3k\gamma-l \end{bmatrix} = \begin{bmatrix} l \\ n-3l\gamma \\ -k \\ 3k\gamma-m \end{bmatrix} = \delta \begin{bmatrix} t \\ u \\ v \end{bmatrix}.$$

This gives m=l and $n=3l\gamma-k$ for A^{\bullet} , so an expression of A^{\bullet} with two new parameters is as follows: $k=\beta$ and $l=\alpha$.

$$A^{\bullet} = \begin{bmatrix} k & l \\ l & 3l\gamma - k \end{bmatrix} = \begin{bmatrix} \beta & \alpha \\ \alpha & 3\alpha\gamma - \beta \end{bmatrix}, \quad (2)$$

For B^{\bullet} , it is also easy to write it with the same two parameters:

$$B^{\bullet} = \begin{bmatrix} t & u \\ v & w \end{bmatrix} = \delta \begin{bmatrix} \alpha & -\beta \\ -\beta & 3\beta\gamma - \alpha \end{bmatrix} = \begin{bmatrix} 3\beta\gamma - \alpha & \beta \\ \beta & \alpha \end{bmatrix}^{-1}, \tag{3}$$

$$\delta = \begin{bmatrix} \alpha & -\beta \\ -\beta & 3\beta\gamma - \alpha \end{bmatrix}^{-1} \begin{bmatrix} 3\beta\gamma - \alpha & \beta \\ \beta & \alpha \end{bmatrix}^{-1} = -\frac{1}{\alpha^2 - 3\gamma\alpha\beta + \beta^2} \in \{\pm 1_2\}.$$

$$\det A^{\bullet} = (\beta(3\alpha\gamma - \beta) - \alpha(\alpha)) = \delta^2(\alpha(3\beta\gamma - \alpha) - \beta(\beta)) = \det B^{\bullet} = \delta \in \{\pm 1_2\}. \tag{4}$$

• A simpler calculation is possible, here presented in order to confirm the previous one:

$$\begin{bmatrix} t & u \\ v & w \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 3\gamma \end{bmatrix} \begin{bmatrix} k & l \\ m & n \end{bmatrix}^{-1} = \delta \begin{bmatrix} m & -k \\ n-3m\gamma & -(l-3k\gamma) \end{bmatrix},$$

$$\begin{bmatrix} t & u \\ v & w \end{bmatrix} = \begin{bmatrix} k & l \\ m & n \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 \\ -1 & 3\gamma \end{bmatrix} = \delta \begin{bmatrix} l & n-3l\gamma \\ -k & -(m-3k\gamma) \end{bmatrix},$$

$$m = l = \alpha, n - 3m\gamma = -k = n - 3l\gamma = -\beta.$$

Hence, we obtain (2), (3), (5) more completely than (4), and with the expressions for B^{\bullet} and A^{\bullet} :

$$\det A^{\bullet} = \det B^{\bullet} = \delta = (-\alpha^2 + 3\gamma\alpha\beta - \beta^2) \in \{\pm 1\}.$$

$$(5)$$

$$B^{\bullet} = \begin{bmatrix} t & u \\ v & w \end{bmatrix} = M_1^{-1} \begin{bmatrix} k & l \\ m & n \end{bmatrix}^{-1} = \begin{bmatrix} k & l \\ m & n \end{bmatrix}^{-1} M_2^{-1},$$

$$B^{\bullet - 1} = M_2 A^{\bullet} = A^{\bullet} M_1, \quad A^{\bullet - 1} = M_1 B^{\bullet} = B^{\bullet} M_2.$$
 (6)

We find also some new expressions which are easy to establish:

$$A^{\bullet}\delta B^{\bullet} = \begin{bmatrix} \beta & \alpha \\ \alpha & 3\alpha\gamma - \beta \end{bmatrix} \begin{bmatrix} \alpha & -\beta \\ -\beta & 3\gamma\beta - \alpha \end{bmatrix}$$
$$= \delta \begin{bmatrix} 0 & 1 \\ -1 & 3\gamma \end{bmatrix} = \delta C^{-1}, \text{ or } A^{\bullet}B^{\bullet}C = 1_{2},$$
with $M_{2}^{-1} = \begin{bmatrix} 3\gamma & -1 \\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 3\gamma \end{bmatrix},$

$$M_2 = B^{\bullet - 1}A^{\bullet - 1} \in SL(2, \mathbb{Z}). \quad (7)$$

$$\delta B^{\bullet} A^{\bullet} = \begin{bmatrix} \alpha & -\beta \\ -\beta & 3\gamma\beta - \alpha \end{bmatrix} \begin{bmatrix} \beta & \alpha \\ \alpha & 3\alpha\gamma - \beta \end{bmatrix} = \delta \begin{bmatrix} 0 & -1 \\ 1 & 3\gamma \end{bmatrix} = \delta C^{-1},$$

then, defining K:

$$\begin{bmatrix} 3\gamma & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 3\gamma \end{bmatrix} = \begin{bmatrix} -1 & -6\gamma \\ 0 & -1 \end{bmatrix} = K, \text{ or } CB^{\bullet}A^{\bullet} = K,$$

where:

$$\begin{bmatrix} 3\gamma & -1 \\ 1 & 0 \end{bmatrix} = M_2, \begin{bmatrix} 0 & -1 \\ 1 & 3\gamma \end{bmatrix} = \begin{bmatrix} 3\gamma & 1 \\ -1 & 0 \end{bmatrix}^{-1} = M_1^{-1}, K = M_2 M_1^{-1}.$$

$$M_1 = A^{\bullet -1} B^{\bullet -1} \in SL(2, \mathbb{Z}). \tag{8}$$

$$A^{\bullet}B^{\bullet}C = 1_{2}, \ CB^{\bullet}A^{\bullet} = K, \ K = B^{\bullet - 1}A^{\bullet - 1}B^{\bullet}A^{\bullet} = [B^{\bullet - 1}, A^{\bullet - 1}]. \eqno(9)$$

• The asymmetric position of δ at the front of B^{\bullet} , not A^{\bullet} , provokes a question. Replacing B^{\bullet} by $B^{\bullet-1}$ is the answer to the question. The condition for M_1 and M_2 to be in $SL(2,\mathbb{Z})$ does not imply the same property for A^{\bullet} and B^{\bullet} . These matrices are in $GL(2,\mathbb{ZZ})\backslash SL(2,\mathbb{ZZ})$ when their determinant δ is -1, and they are in $SL(2,\mathbb{ZZ})$ when $\delta=1$. We have two cases, owing to the fact that δ can have two values, ± 1 . In the two cases we exhibit a non trivial example.

Example 1. – With $\beta = 5$, $\alpha = 2$, $\gamma = 1$, we obtain $\delta = 1$:

$$A^{\bullet} = \begin{bmatrix} a & b \\ b & -a + 3\gamma b \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}, B^{\bullet} = \begin{bmatrix} b & -a \\ -a & 3\gamma a - b \end{bmatrix} = \begin{bmatrix} 2 & -5 \\ -5 & 13 \end{bmatrix},$$

$$\delta = \det A^{\bullet} = -(a^{2} - 3\gamma ab + b^{2}) = \det B^{\bullet} = 1, A^{\bullet}, B^{\bullet} \in SL(2, \mathbb{Z}).$$

$$tr(A^{\bullet})^{2} + (trA^{\bullet}B^{\bullet})^{2} + (trB^{\bullet})^{2} - tr(A^{\bullet})tr(A^{\bullet}B^{\bullet})tr(B^{\bullet})$$

$$= 6^{2} + 3^{2} + 15^{2} - 6 \times 3 \times 15$$

$$= 3^{2}(\beta^{2} + \alpha^{2} + 1^{2} - 3 \times \beta \times \alpha \times 1) = 0.$$

We obtain a formula linking together the matrices A^{\bullet} and B^{\bullet} , situated in $SL(2,\mathbb{Z})$. With $C^{\bullet}=C=A^{\bullet}B^{\bullet}$, this gives the triple $(B^{\bullet-1},A^{\bullet},B^{\bullet-1}A^{\bullet-1})$ introduced in ([17] Chap. 6. page 162), associated to (5,2,1). W **Example 2.** — With $\beta=35$, $\alpha=6$, $\gamma=2$, we obtain $\delta=-1$ and :

$$A^{\bullet} = \begin{bmatrix} \beta & \alpha \\ \alpha & -\beta + 3\gamma\alpha \end{bmatrix} = \begin{bmatrix} 35 & 6 \\ 6 & 1 \end{bmatrix},$$

$$B^{\bullet} = \delta \begin{bmatrix} \alpha & -\beta \\ -\beta & 3\gamma\beta - \alpha \end{bmatrix} = -\begin{bmatrix} 6 & -35 \\ -35 & 204 \end{bmatrix},$$

$$tr(A^{\bullet})^{2} - (trA^{\bullet}B^{\bullet})^{2} + (trB^{\bullet})^{2} - tr(A^{\bullet})tr(A^{\bullet}B^{\bullet})tr(B^{\bullet})$$

$$= 36^{2} - 6^{2} + 210^{2} - 36 \times 6 \times 210 = 0$$

$$= 6^{2}(\beta^{2} - 3 \times 2 \times \beta \times \alpha + \alpha^{2}) - 6^{2}.$$

We obtain a formula linking together the matrices A^{\bullet} and B^{\bullet} , which are situated in $GL(2,\mathbb{ZZ})\backslash SL(2,\mathbb{ZZ})$. W In both cases, we can evaluate δ :

Property 2. – For $A^{\bullet}, B^{\bullet} \in GL(2, \mathbb{Z})$, identified before, we have the relation of Fricke with signs:

$$tr(A^{\bullet})^{2} + \delta(trA^{\bullet}B^{\bullet})^{2} + (trB^{\bullet})^{2} - tr(A^{\bullet})tr(A^{\bullet}B^{\bullet})tr(B^{\bullet}) = 0.$$
 (10)

Proof. We compute:

$$tr(A^{\bullet})^{2} + \delta(trA^{\bullet}B^{\bullet})^{2} + (trB^{\bullet})^{2} - tr(A^{\bullet})tr(A^{\bullet}B^{\bullet})tr(B^{\bullet})$$

$$= (3\gamma\alpha)^{2} + \delta(-3\gamma\delta(\beta^{2} - 3\gamma\beta\alpha + \alpha^{2}))^{2} + (3\gamma\beta)^{2}$$

$$- (3\gamma\alpha)(-3\gamma\delta(\beta^{2} - 3\gamma\beta\alpha + \alpha^{2})(3\gamma\beta))$$

$$= (3\gamma)^{2}((\alpha)^{2} + \delta + (\beta)^{2} - (\alpha)(\beta)(3\gamma))$$

$$= (3\gamma)^{2}((\alpha)^{2} - (\alpha)(\beta)(3\gamma) + (\beta)^{2} + \delta) = (3\gamma)^{2}(-\delta + \delta) = 0. \quad W$$

This proves the claim.

3 Links with the Fibonacci numbers

Two cases have been defined owing to the fact that δ can have two values, ± 1 . To determine α and β , we got a Diophantine equation (4) which is easy to solve.

3.1 First case ($\delta = 1$)

We find $\det(A^{\bullet}) = \det(B^{\bullet}) = 1$, and A^{\bullet} , $B^{\bullet} \in SL(2,\mathbb{Z})$. We deal with the Diophantine equation

$$(\alpha^2 - 3\alpha\beta + \beta^2) = -1.$$

It has been already studied in [2], and we have:

Property 3. — The Diophantine equation $(\alpha^2 - 3\gamma\alpha\beta + \beta^2) = -1$ has solutions if and only if $\gamma = \pm 1$.

Proof. The references ([2], Theorem 6.3.1. p. 150) [21], [16]) give all that is needed about the solutions. W

ullet Any solution (lpha,eta) of this equation corresponds by a 1 to 1 correspondence to (-lpha,eta) , a solution of the equation

 $(\alpha^2 - 3\alpha\beta + \beta^2) = -1$. We have only to look at our equation $(\alpha^2 - 3\alpha\beta + \beta^2) = -1$, to get all the solutions of the other. Moreover, the matrices A^{\bullet} and B^{\bullet} are in $SL(2,\mathbb{Z})$. It is interesting to realize that with $\gamma = 1$,

$$trA^{\bullet} = 3b, trB^{\bullet} = 3a, trA^{\bullet}B^{\bullet} = 3, tr(A^{\bullet}B^{\bullet}A^{\bullet -1}B^{\bullet -1}) = -2.$$

Applying Fricke's formula ([17] p. 160, Prop. 2) and simplifying,

$$\alpha^2 - 3\alpha\beta + \beta^2 = -1 = -\delta. \tag{11}$$

This equation is solvable in integers with a method obtained from the classical Markoff theory. The solutions are written with the Fibonacci sequence (OEIS **A000045**). We find in [2], [16], all the solutions: (1,1),(-1,-1) and for all $n \ge 1$:

$$(-F_{2n-1}, -F_{2n+1}), (-F_{2n+1}, -F_{2n-1}), (F_{2n-1}, F_{2n+1}), (F_{2n+1}, F_{2n-1}).$$

For n = 1, we get

$$(-F_1, -F_3) = (-1, -2), (-F_3, -F_1) = (-2, -1),$$

 $(F_1, F_3) = (1, 2), (F_3, F_1) = (2, 1).$

For all the couples of solutions, if (α, β) is one of them $(-\alpha, -\beta)$ is another:

$$(\beta, \alpha)$$
, $(3\alpha - \beta, \alpha)$, $(\beta, 3\beta - \alpha)$ and $(-\beta, -\alpha)$, $(-\beta, \alpha - 3\beta)$, $(\beta - 3\alpha, -\alpha)$ solutions.

We find a figure with four sequences connected at the end of each other, at the singular solution (1,1). But with **bisequences** $(F_n)_{n\in\mathbb{Z}}$ defined as indexed by \mathbb{Z} , the Fibonacci bisequence gives

$$\cdots$$
, $F_{-4} = -3$, $F_{-3} = 2$, $F_{-2} = -1$, $F_{-1} = 1$, $F_{0} = 0$, $F_{1} = 1$, $F_{2} = 1$, \cdots

$$\forall n \in \mathbb{ZZ}, F_{2n+1} = F_{-(2n+1)}, F_{-2n} = -F_{2n}.$$

Hence we can write, on the upper infinite dihedral group C_{∞} , a bisequence (F_{2n+1},F_{2n-1}) to name the nodes of C_{∞} , but this constrains us to use the second group C_{∞} for the other bisequence $(-F_{2n+1},-F_{2n-1})$. We will give another notation in the sequel, where (F_{2n+1},F_{2n-1}) will be replaced by (F_{2n-1},F_{2n+1}) if and only n is even, and so on for the three couples obtained by permutation of F_{2n+1} and F_{2n-1} , and multiplication of the two terms of the couple by -1. With this method we find a bisequence of pairs of positive Fibonacci numbers which are the positive solutions of the equation $(\alpha^2 - 3\alpha\beta + \beta^2) = -1$. This corresponds to the infinite cyclic group $C_{+\infty}$, in the upper position in Figure 1.

$$(F_5,F_7) = (5,13) \qquad (F_7,F_5) = (13,5)$$

$$Z \qquad [$$

$$(2,5) = (F_3,F_5) \qquad (5,2) = (F_5,F_3)$$

$$Z \qquad C_{+\infty} \qquad [$$

$$(1,2) = (F_1,F_3) \qquad (2,1) = (F_3,F_1)$$

$$\land \qquad [$$

$$(1,1) = (F_1,F_1) \qquad C_2 \uparrow \downarrow \text{ singular } \qquad C_2 \uparrow \downarrow$$

$$[\quad (-1,-1) = (F_{-1},F_{-1}) \quad \land \quad (-2,-1) = (-F_{-3},F_{-1})$$

Figure: n°1: Set of solutions of $\alpha^2 - 3\alpha\beta + \beta^2 = -1$

We see with the negative Fibonacci numbers a structure of a group isomorphic to $C_{+\infty} \times C_2 \simeq \mathbb{ZZ} \times \mathbb{ZZ}/2\mathbb{ZZ}$. We can also say that the matrix M_2 operates on the set of solutions.

Remark 1. - We have given in [20] the relation

$$F_{6n-9} = 3F_{6n-7} - F_{6n-5}$$

Together with the same relation for F_{6n-7}

$$\begin{bmatrix} 3 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{6n-7} \\ F_{6n-5} \end{bmatrix} = \begin{bmatrix} F_{6n-9} \\ F_{6n-7} \end{bmatrix} \text{ where } \begin{bmatrix} 3 & -1 \\ 1 & 0 \end{bmatrix} = M_2,$$

it gives relations fixing the orientation of the action of $\,M_2$, realizing the infinite cyclic group $\,C_{\scriptscriptstyle\infty}$:

$$\dots, \begin{bmatrix} 3 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \dots$$

The commutative group $C_2 \times C_{+\infty} \simeq \mathbb{Z}\mathbb{Z}/2\mathbb{Z}\mathbb{Z} \times \mathbb{Z}\mathbb{Z}$, operates on solutions of the equation $\alpha^2 - 3\alpha\beta + \beta^2 = -1$. It is not the corresponding infinite dihedral group $D_\infty \simeq C_2 \times C_{+\infty} \simeq \mathbb{Z}\mathbb{Z}/2\mathbb{Z}\mathbb{Z} \rtimes \mathbb{Z}\mathbb{Z}$, not studied here. W

3.2 Second case ($\delta = -1$)

We find $\det(A^{\bullet}) = \det(B^{\bullet}) = -1$, and A^{\bullet} , $B^{\bullet} \in GL(2, \mathbb{Z} \setminus SL(2, \mathbb{Z} \cup SL(2, \mathbb{Z}$

$$(\alpha^2 - 3\gamma\alpha\beta + \beta^2) = 1 = -\delta. \quad (12)$$

This equation has been studied in [2] (pp. 130-150), and we have:

Property 4. – The Diophantine equation $(\alpha^2 - 3\gamma\alpha\beta + \beta^2) = 1$ has solutions if and only if $|3\gamma| \ge 2$.

Proof. The reference [2] gives all that is needed about the solutions. W

• We deal with matrices situated in $GL(2,\mathbb{Z})$ but not in $SL(2,\mathbb{Z})$. We give the continued fraction of η , the root of

$$\psi_{\nu}(X,1) = X^2 - 3\gamma X + 1$$
:

$$\eta = \frac{3\gamma + \sqrt{(9\gamma^2 - 4)}}{2} = [3\gamma - 1, 1, 3\gamma - 2].$$

We produce then the classical table of the values of the associated form. For $\gamma=1$ we have $2-3\gamma=-1$, and we find with the following table two classes of solutions, couples of Fibonacci numbers up to signs, of the equation $\alpha^2-3\gamma\alpha\beta+\beta^2=-1$ of the **first case**:

$$3\gamma - 1] = 3\gamma - 1 = \frac{p}{q} \qquad : \quad p^2 - 3\gamma pq + q^2 = 2 - 3\gamma$$

$$3\gamma - 1, 1] = \frac{3\gamma}{1} = \frac{\alpha}{\beta} \qquad : \quad \alpha^2 - 3\gamma\alpha\beta + \beta^2 = 1$$

$$3\gamma - 1, 1, 3\gamma - 2] = \frac{(9\gamma^2 - 3\gamma - 1)}{(3\gamma - 1)} = \frac{p}{q} \quad : \quad p^2 - 3\gamma pq + q^2 = 2 - 3\gamma$$

$$3\gamma - 1, 1, 3\gamma - 2, 1] = \frac{(9\gamma^2 - 1)}{(3\gamma)} = \frac{p}{q} \quad : \quad p^2 - 3\gamma pq + q^2 = 1$$

We see that the matrix $C=M_2$ plays an important role for the transportation of the period of η :

$$\begin{bmatrix} 3\gamma - 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 3\gamma - 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 3\gamma - 1 & 1 \\ 1 & 0 \end{bmatrix}^{-1}$$
$$= \begin{bmatrix} 3\gamma & -1 \\ 1 & 0 \end{bmatrix} = C = M_2.$$

This gives all the solutions of the equation $\alpha^2-3\gamma\alpha\beta+\beta^2=-1$, with a sign ± 1 corresponding to the cycle C_2 and the infinite cycle $C_{+\infty}$ given by M_2 :

...,
$$M_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $M_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3\gamma \\ 1 \end{bmatrix}$, $M_2 \begin{bmatrix} 3\gamma \\ 1 \end{bmatrix} = \begin{bmatrix} 9\gamma^2 - 1 \\ 3\gamma \end{bmatrix}$, ...

In the present case, $\det(A^{\bullet}) = \det(B^{\bullet}) = -1$. We would like to be able to apply some relation similar to Fricke's formula, for example, the last expression of [17] (p. 28).

3.3 A general Fricke's equation

But a formula such as that one which will be true for $GL(2, \mathbb{ZZ})$ is more complicated, and does not seem to be given in any of the numerous articles written about Fricke's formula. Working on this, we found:

Property 5. – For any matrices $A, B \in GL(2, \mathbb{Z})$, we have the generalized Fricke's formula:

 $tr[A,B] + 2 = tr(ABA^{-1}B^{-1}) + 2$ $= \det(A) \times tr(A)^{2} + \det(B) \times tr(B)^{2} + \det(A) \times \det(B) \times tr(AB)^{2}$ $-\det(A) \times \det(B) \times tr(A) \times tr(B) \times tr(AB).$

Proof. Let

$$A = \begin{bmatrix} \beta & \alpha \\ m & n \end{bmatrix}, \quad B = \begin{bmatrix} t & u \\ v & w \end{bmatrix}, \quad AB = \begin{bmatrix} t\beta + v\alpha & u\beta + w\alpha \\ mt + nv & mu + nw \end{bmatrix},$$

$$trA = \beta + n, \quad \det A = \beta n - \alpha m, \quad trB = t + w, \quad \det B = tw - uv,$$

$$tr(AB) = t\beta + v\alpha + mu + nw, \quad \det AB = \det A \det B,$$

 $ABA^{-1}B^{-1}$

$$= \begin{bmatrix} \beta t + \alpha v & \beta u + \alpha w \\ mt + nv & mu + nw \end{bmatrix} (\beta n - \alpha m)^{2} \begin{bmatrix} \beta & \alpha \\ m & n \end{bmatrix}^{-1} (tw - uv)^{2} \begin{bmatrix} t & u \\ v & w \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} \beta t + \alpha v & \beta u + \alpha w \\ mt + nv & mu + nw \end{bmatrix} (\beta n - \alpha m) \begin{bmatrix} n & -\alpha \\ -m & \beta \end{bmatrix} (tw - uv) \begin{bmatrix} w & -u \\ -v & t \end{bmatrix}$$

$$= (\beta n - \alpha m)(tw - uv) \begin{bmatrix} \beta t + \alpha v & \beta u + \alpha w \\ mt + nv & mu + nw \end{bmatrix} \begin{bmatrix} \alpha v + nw & -\alpha t - nu \\ -\beta v - mw & \beta t + mu \end{bmatrix},$$

 $tr(ABA^{-1}B^{-1})$

$$= (\beta n - \alpha m)(tw - uv)(-\beta^{2}uv + \beta \alpha tv - \beta \alpha vw + \beta mtu - \beta muw + 2\beta ntw + \alpha^{2}v^{2}$$

$$-\alpha mt^{2} - \alpha mw^{2} - \alpha ntv + \alpha nvw + m^{2}u^{2} - mntu + mnuw - n^{2}uv)$$

$$= (\beta n - \alpha m)(tw - uv)\Theta,$$

$$\Theta = -\beta^{2}uv + \beta \alpha tv - \beta \alpha vw + \beta mtu - \beta muw + 2\beta ntw + \alpha^{2}v^{2}$$

$$-\alpha mt^{2} - \alpha mw^{2} - \alpha ntv + \alpha nvw + m^{2}u^{2} - mntu + mnuw - n^{2}uv).$$

Then

$$\det A \times tr(A)^{2} + \det B \times tr(B)^{2}$$

$$+ \det A \times \det B \times tr(AB)^{2} - \det A \times \det B \times tr(A)tr(B)tr(AB)$$

$$= (\beta n - \alpha m)(\beta + n)^{2} + (tw - uv)(t + w)^{2}$$

$$+ (\beta n - \alpha m)(tw - uv)(\beta t + \alpha v + mu + nw)^{2}$$

$$- ((\beta n - \alpha m)(tw - uv)(\beta + n)(t + w)(\beta t + \alpha v + mu + nw))$$

$$= (\beta n - \alpha m)(\beta + n)^{2} + (tw - uv)(t + w)^{2}$$

$$- (tw - uv)(\beta n - \alpha m)(\beta w - \alpha v - mu + nt)(\beta t + \alpha v + mu + nw)$$

$$= (\beta n - \alpha m)(\beta + n)^{2} + (tw - uv)(t + w)^{2} + (tw - uv)(\beta n - \alpha m)\Xi,$$

With

$$\Xi = (\beta t + \alpha v + mu + nw)(\alpha v - \beta w + mu - nt)$$

$$= -\beta^2 tw + \beta \alpha tv - \beta \alpha vw + \beta mtu - \beta muw - \beta nt^2 - \beta nw^2 + \alpha^2 v^2$$

$$+2\alpha muv - \alpha ntv + \alpha nvw + m^2 u^2 - mntu + mnuw - n^2 tw,$$

and so we find

$$\Xi - \Theta = -(\beta^{2} + n^{2})(tw - uv) - (\beta n - \alpha m)(t^{2} + w^{2}) - 2\beta ntw + 2\alpha muv$$

$$-(\beta + n)^{2}(tw - uv) - (\beta n - \alpha m)(t + w)^{2}$$

$$-2\beta ntw + 2\alpha muv + 2\beta n(tw - uv) + 2tw(\beta n - \alpha m)$$

$$= -(\beta + n)^{2}(tw - uv) - (\beta n - \alpha m)(t + w)^{2} + 2(tw - uv)(\beta n - \alpha m).$$

Now we combine:

$$-2-tr(ABA^{-1}B^{-1}) + \det A \times \det B \times tr(AB)^{2}$$

$$-\det A \times \det B \times tr(A)tr(B)tr(AB)$$

$$= -2+(tw-uv)(\beta n - \alpha m)(\Xi - \Theta)$$

$$= -2+(tw-uv)(\beta n - \alpha m)(-(\beta + n)^{2}(tw-uv)$$

$$-(\beta n - \alpha m)(t+w)^{2} + 2(tw-uv)(\beta n - \alpha m))$$

$$= -2-((\beta + n)^{2}(\beta n - \alpha m) + (tw-uv)(t+w)^{2} + 2)$$

$$= -\det A \times tr(A)^{2} - \det B \times tr(B)^{2},$$

and we get

$$\det A \times tr(A)^{2} + \det A \times \det B \times tr(AB)^{2} + \det B \times tr(B)^{2}$$
$$-\det A \times \det B \times tr(A)tr(AB)tr(B) = 2 + tr(ABA^{-1}B^{-1})$$
 W

Here, the commutator to deal with is $[A,B] = ABA^{-1}B^{-1}$. And we are in the **parabolic case** if and only if tr([A,B]) = -2.

Example 3. – With $\delta = 1$ and for example $\beta = 5$, $\alpha = 2$, $\gamma = 1$:

$$\delta = 1 = -(\beta^2 - 3\gamma\beta\alpha + \alpha^2) = \det A^{\bullet} = \det B^{\bullet}, \quad A^{\bullet}, B^{\bullet} \in SL(2, \mathbb{ZZ}).$$

$$tr(A^{\bullet})^2 + (trA^{\bullet}B^{\bullet})^2 + (trB^{\bullet})^2 - tr(A^{\bullet})tr(A^{\bullet}B^{\bullet})tr(B^{\bullet})$$

$$= 3^2(5^2 + 2^2 + 1^2 - 3\times5\times2\times1) = 0.$$

We are in the case of the positive Fricke's relation, linking together the matrices A^{\bullet} and B^{\bullet} , situated in $SL(2,\mathbb{Z})$. With $C=A^{\bullet}B^{\bullet}$, the triple $(B^{\bullet},A^{\bullet}B^{\bullet},A^{\bullet})$ introduced in ([17] Chap. 6. page 162), is associated to (5,2,1). W

Example 4. — With $\delta = -1$ and for example $\beta = 35$, $\alpha = 6$, $\gamma = 2$:

$$\delta = -1 = -(\beta^2 - 3\gamma\beta\alpha + \alpha^2) = \det A^{\bullet} = \det B^{\bullet} \quad A^{\bullet}, B^{\bullet} \in GL(2, \mathbb{ZZ}) \backslash SL(2, \mathbb{ZZ}).$$

$$tr(A^{\bullet})^2 - (trA^{\bullet}B^{\bullet})^2 + (trB^{\bullet})^2 - tr(A^{\bullet})tr(A^{\bullet}B^{\bullet})tr(B^{\bullet})$$

$$= 6^2(35^2 - 3\times2\times35\times6 + 6^2) - 6^2 = 0.$$

We obtain a formula linking together the matrices A^{\bullet} and B^{\bullet} , which are situated in $GL(2,\mathbb{ZZ})\backslash SL(2,\mathbb{ZZ})$. W

Remark 2. The cases with which we deal in Property 2 and Property 5 are different. In the first case, A^{\bullet} and B^{\bullet} are linked with strong constraints by the common coefficients β and α , and their positions inside these matrices. On the contrary, Property 5 is true for any matrices $A, B \in GL(2, \mathbb{ZZ})$. W

Example 5. – With $\delta = 1$ and for example

$$A = \begin{bmatrix} 11 & 3 \\ 7 & 2 \end{bmatrix} \in SL(2, \mathbb{Z}), \quad B = \begin{bmatrix} 37 & 11 \\ 10 & 3 \end{bmatrix} \in SL(2, \square \mathbb{Z})$$

$$tr([A, B]) = tr(ABA^{-1}B^{-1}) = tr\begin{bmatrix} -1298 & 4799 \\ -829 & 3065 \end{bmatrix} = 1767 \neq -2,$$

we are not in the parabolic case. Moreover, we verify Property 5:

$$\det A \times tr(A)^{2} + \det A \times \det B \times tr(AB)^{2} + \det B \times tr(B)^{2}$$

$$-\det A \times \det B \times tr(A)tr(AB)tr(B) = 2 + tr(ABA^{-1}B^{-1})$$

$$= 13^{2} + 520^{2} + 40^{2} - 13 \times 520 \times 40 = 1769 = tr([A, B]) + 2. \quad \text{W}$$

4 Final result for the free group with two generators

We face the fact that the group $gp(A^{\bullet}, B^{\bullet})$ generated by A^{\bullet} and B^{\bullet} is free. By Property 1 and $tr(A^{\bullet}B^{\bullet}A^{\bullet^{-1}}B^{\bullet^{-1}}) = -2$, A^{\bullet} and B^{\bullet} generate the free group $\mathbf{F}_2 = [SL(2, \mathbb{Z}), SL(2, \mathbb{Z})] = gp(A^{\bullet}, B^{\bullet})$ in $SL(2, \mathbb{Z})$. This group countains $M_1 = A^{\bullet^{-1}}B^{\bullet^{-1}}$ and $M_2 = B^{\bullet^{-1}}A^{\bullet^{-1}}$.

Property 6. — The subgroup $gp(M_1, M_2)$ of \mathbf{F}_2 is free and isomorphic to $\mathbf{F}_2 = gp(A^{\bullet}, B^{\bullet})$, but not equal to \mathbf{F}_2 .

Proof. The group $gp(M_1, M_2)$ generated by M_1 and M_2 is a subgroup of \mathbf{F}_2 , hence by the theorem of Nielsen-Schreier ([14] p. 92), it is a free subgroup of \mathbf{F}_2 . But $tr[M_2, M_1] = 38$ confirms with Property 1 that (M_1, M_2) is not a system of generators of \mathbf{F}_2 . W

• A confirmation that $gp(M_1, M_2)$ is a free group is **not** given by the properties of the commutator of M_1 and M_2 :

$$tr(M_1)^2 + (trM_2)^2 + (trM_1M_2)^2 - tr(M_1)(trM_2)(trM_1M_2)$$

= 3² + 3² + 11² - 3×3×11 = 139 - 99 = 40.

and not through Property 1, because

$$[M_{2}, M_{1}] = M_{2}M_{1}M_{2}^{-1}M_{1}^{-1} =$$

$$= \begin{bmatrix} 3 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 3 & 1 \\ -1 & 0 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 19 & 60 \\ 6 & 19 \end{bmatrix}, \text{ or } tr[M_{2}, M_{1}] = 38.$$

The **rank**, which is the number of generators of a free group, is 2 for \mathbf{F}_2 . The **index** of the subgroup $gp(M_1, M_2)$ of \mathbf{F}_2 , denoted by $k = [\mathbf{F}_2 : gp(M_1, M_2)]$ may be used:

• 1/Suppose k is infinite. We are in a situation where \mathbf{F}_2 is a free group and $gp(M_1, M_2)$, not a group with one element, has infinite index in \mathbf{F}_2 . Then $gp(M_1, M_2)$ is of infinite rank ([4] p. 355). But this is false, because this group has two generators M_1 and M_2 hence a rank less than 2. This case is impossible.

Note that in \mathbf{F}_2 , the derived group,

$$D(\mathbf{F}_2) = gp([x, y] | x, y \in \mathbf{F}_2) \subset \mathbf{F}_2,$$

has infinite rank ([4] Théorème (9.39) p. 355 or [15] prop. 3.1. p. 13):

$$rank(D(\mathbf{F}_2)) = \infty$$
.

• 2/ Suppose k is finite. We have ([15] Proposition 3.9. p. 16):

$$k = [\mathbf{F}_2 : gp(M_1, M_2)] = \frac{rank(gp(M_1, M_2)) - 1}{rank(\mathbf{F}_2) - 1} = 1.$$

Because our free groups $gp(M_1, M_2)$ and \mathbf{F}_2 have two generators, the former relations give :

$$[\mathbf{F}_2 : gp(M_1, M_2)] = 1$$
, then $\mathbf{F}_2 : gp(M_1, M_2)$.

$$rank(gp(M_1, M_2)) = [\mathbf{F}_2 : gp(M_1, M_2)] + 1 = 2.$$

The conclusion is that \mathbf{F}_2 ; $gp(M_1,M_2)$, not $\mathbf{F}_2=gp(M_1,M_2)$. It would be more comforting if A^{\bullet} and B^{\bullet} could be written with words in M_1 and M_2 . The conclusion would be an equality. But this does not happen: only the isomorphism is sure. W

• Property 1 is verified with A^{\bullet} and B^{\bullet} , not M_1 or M_2 , and we have (6). If we could write A^{\bullet} as a word of M_1 and M_2 ,

 $A^{\bullet} = A^{\bullet}(M_1, M_2)$, we could write B^{\bullet} the same way, and conversely:

$$B^{\bullet} = M_1^{-1} A^{\bullet - 1} = M_1^{-1} A^{\bullet} (M_1, M_2)^{-1} = B^{\bullet} (M_1, M_2) = A^{\bullet - 1} M_2^{-1}, (13)$$

$$A^{\bullet} = M_2^{-1} B^{\bullet - 1} = M_2^{-1} B^{\bullet} (M_1, M_2)^{-1} = A^{\bullet} (M_1, M_2) = M_2^{-1} B^{\bullet - 1}.$$
 (14)

We would like to conclude that $A^{\bullet} \in gp(M_1, M_2)$ and $B^{\bullet} \in gp(M_1, M_2)$, so $\mathbf{F}_2 = gp(A^{\bullet}, B^{\bullet}) = gp(M_1, M_2)$. But this is not true, and we have only

$$A^{\bullet} \notin gp(M_1, M_2)$$
 and $B^{\bullet} \notin gp(M_1, M_2)$.

Remark

$$gp(A^{\bullet}, B^{\bullet}) = \mathbb{F}_2$$
; $gp(M_1, M_2)$, $rank(\mathbb{F}_2) = 2$,

$$[\mathbf{F}_2: gp(M_1, M_2)] = k < \infty \implies rank(gp(M_1, M_2)) = k + 1 < \infty.$$

References:

- T.w. Cusick, M.E. Flahive. (1989) The Markoff and Lagrange spectra, Mathematical Surveys and Monographs, Number 30, American Mathematical Society,
- A.t. Andreescu, D. Andrica. (2015) Quadratic Diophantine Equations, Springer,
- T. Andreescu, D. Andrica, I.Cucurezeranu. (2010). Introduction to Diophantine Equations, Birkhaüser,
- J. Calais. (1984) Elements de théorie des groupes, Presses Universitaires de France,
- J.W.S. Cassels. (1957) An Introduction to Diophantine Approximation, Cambridge University Press,
- H. Cohn. (1955) Approach to Markoff's minimal forms through modular functions, Annals of Mathematics, 61(1), pp. 1-12.
- H. Cohn. (1971) Representation of Markoff's binary quadratic forms by geodesics of a perforated torus, Acta Arithmetica, 18, pp. 125-136.
- H. Cohn. (1978) Minimal geodesics on Fricke's torus covering, Proc. 1978 Stony Brook Conf. Princeton, Annals of Math Studies 97, pp. 73-85,
- J. Djermane. (2017) Le théorème de Perrine, Mémoire de Maitrise, Université du Quebec à Montréal, p. 57,
- 10. A. Dujella. (2021) Number Theory, Školska knjiga, Zagreb.

- F.G. Frobenius. (1913) Über die Markoffschen Zahlen, Preuss.
 Akad. Wiss. Silzungs der Physickalicher-Mathematichen Classe, pp. 458-487.
- J. P. Jones. (2003) Representation of solutions of Pell equations using Lucas sequences, Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae, pp. 75-86.
- R. keskin, M. güney. (2013) Positive integer solutions of the Pell equation and arXiv:1304.6887v1 [math.NT] 35
- C. löh. (2017) Geometric Group Theory, An Introduction, Springer.
- 15. R. C. lyndon, P. E. schupp. (1977) Combinatorial Group Theory, Springer.
- 16. F. Luca, a. Srinivasan. (2018,) Markov equation with Fibonacci components, The Fibonacci Quarterly, 56(2), pp. 126-129.
- 17. S. Perrine. (2002.) La théorie de Markoff et ses développements, Tessier et Ashpool, Chantilly, France.
- S. Perrine. (2017) Sur la conjecture de Frobenius relative à l'équation de Markoff, Editions universitaires européennes, Saarbrucken, Germany.
- S. Perrine. (2022) About diophantine equations, Recent Advances in Mathematics Research and Computer Science.
- 20. S. Perrine. (2016) Some properties of the equation, The Fibonacci Quarterly, 54(2), pp. 172-177.

21. S. G. Rayaguru, M. K. Sahukar, G. K. Pandar. (2020,) Markoff equations with components of some binary recurrent sequences,

Notes on Number Theory and Discrete Mathematics, 26(3), pp. 59-69.

This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here: Submit Manuscript

DOI: 10.31579/jmme.2022/012

Ready to submit your research? Choose Auctores and benefit from:

- fast, convenient online submission
- * rigorous peer review by experienced research in your field
- rapid publication on acceptance
- authors retain copyrights
- unique DOI for all articles
- immediate, unrestricted online access

At Auctores, research is always in progress.

 $\label{lem:lemmatical-methods-in-engineering} Learn \, more \, \, \underline{\text{https://www.auctoresonline.org/journals/mathematical-methods-in-engineering}} \, \\$