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Abstract 

Cohn triples of   matrices and their links with the theory of free groups of rank   were discovered in 1955 by 

Harvey Cohn. A lot of consequences were developed for the modular group SL (2, Z) and the free subgroup F2 

In the present article, we deal with a new construction of such triples and resulting Diophantine equations. 
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Introduction 

We deal in the present article with the Markoff spectrum M  as defined by [1]. The minimum ( )m f  of an indefinite binary quadratic form

2 2( , ) =f x y ax bxy cy+ +  

with real coefficients and positive discriminant 
2( ) = 4f b ac −  is 

( ) = inf ( , ) ,m f f x y  

where the infimum is taken over all the pairs of integers ,x y  not both zero. The set of values ( ) / ( )m f f  is defined as being the Markoff 

spectrum M . 

· With the reduction of the form f  to jf , we have the possibility of computing the values ( )m f  with doubly infinite sequences  

1 0 1( , , , , , , , , ).j ia a a a a− −  

We have  

1 2= , ,..., ,... >1,j j j ja a a +
    

 

1 2 01< = (1/ ) = 0, , ,..., ,... < 0,'

j j j ja a a  − −
 − − −   
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1 1

1 1
( ) ( , ) = ( )( ), = , = ,' '

j j j j j j j j j '

j j

f x y x y x y a a     
 + +

− − + +  

2
= , = ( ) / ( ) = ( ) = ( ) = ( ) / ( ).inf

2

j'

j j j j j
j

j

L
m f f C f C f m f f

L
 



 
−   

 Z

 

We go from 1j +  to j , and from 
1

'

j +
 to 

'

j  with 2 2  matrix with integer coefficients. Its determinant is often 1, but it will be possible to find 

another value -1 for the determinant of our matrices, and corresponding to a matrix of (2, )GL Z . More important, we will use the transpose of 

2M :    

 2 1 2 2

3 1
= , = transpose of ,  fixed parameter.

1 0

TM M M M


 
− 

 
 

N  

Also 1 2, (2, )M M SL Z  (modular group) when 2det = 1M . When multiplied, these matrices yield 

1 1

2 1 1 2

1 0 1 6
( )( ) = , ( )( ) = .

6 1 0 1
M M M M





− −
−   

− − − − − −   
   

 

Transposing the second equality and adding it to the first one, we find a relation similar to the Heisenberg relation: 
1 1

2 1 1 2 2( )( ) ( )( ) = 2 1 .M M M M− −+ −   

In what follows, we generalize the computations made by Cohn [6], [7], [8], in à set of articles trying to approach Markoff’s forms through modular 

functions: 

2

1 1

1 2 1 2

36 1 6
( )( )( )( ) = .

6 1
M M M M

 



− −
 +
 
 

 (1) 

We see that the trace of the last commutator is not a multiple of 3. So we try to generalize the result quoted in the mémoire [9], saying that 

Property 1. −  For two matrices , (2, ),A B SL Z  the following are equivalent: 

 1/ The couple ( , )A B  generates the free group 𝐹2 = [𝑆𝐿(2,ℤℤ), 𝑆𝐿(2,ℤℤ)] in (2, )SL Z , 

 2/ The triple (( ( ) / 3,( ( ) / 3,( ( ) / 3))tr A tr B tr AB  is a solution of the Markoff equation 
2 2 2 = 3x y z xyz+ + . 

 3/ We have 
1 1([ , ]) = ( ) = 2tr A B tr ABA B− − − . 

Moreover, if ( , )' 'A B  is another generating system for 2F , the free group generated by ( , )A B , there exists one and only one 

(2, ) ={ | 2 2N GL M Z  integer matrix and det = 1}M   up to a sign, verifying the conditions 

1 1= , = ,' 'A NAN B NBN− −
 

if and only if we have  

 (( ( ) / 3),( ( ) / 3),( ( ) / 3)) = (( ( ) / 3),( ( ) / 3),( ( ) / 3)).' ' ' 'tr A tr B tr AB tr A tr B tr A B  

Proof. See [17] (Chap. 6). Prop. 4.1 page 170 for 1 2  Prop. 4.3 page 174 for 2 1. Also [9] (Chap. 6). Prop. 6.0.1 page 57 for 1 2,  Prop. 

6.0.2 page 57 for 2 1.  The equivalence 2 3  is a consequence of the formula of Fricke ( 1)FR  ( [17] page 160). For the remaining part: ( 

[17] Chap. 6. prop. 5.1 page 175).   W 

2 A new construction of the Cohn triples 

2.1 Initial attempt to build a Cohn triple 

We could choose, in order to have 2=1ABC
: 

1 1

1 2 12

1 3 3 1
= = , = = ,

3 9 1 1 0
B M M A M

 

 

− −
−   

   
− + −   

 

1 1

2 2

0 1 6 1
= = = , = .

1 3 18 1 3
C M AB BA



  

− −    
   
− − − −   

 

But this gives for C  and A  the same trace, which is limited enough, and a trace of B  not a multiple of 3 . Also: 
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1 1

1 1 2 2 2

1 0
= = = 1 .

0 1
ABC M M M M− −  

 
 

 

2

1 1

2 1 2 1

36 1 6
= = .

6 1
CBA M M M M

 



− −
 +
 
 

 

 
1 1 1 1

2 1 2 1 1 2 1 2( )( )( )( ) = ( )( )( )( ).M M M M M M M M− − − −
 

2.2 Successful consequences of the definitive choice 

We keep 2=C M  and put 
1 1= = =AB A B C C• • •− −

, two matrices being built with A•
 and B•

, the matrices to be determined. Let us 

write, with = 1   and  Z , and compute, where the interesting cases seem to be 0  :   

1 0
= , = .

0 1 0
A B C CB A

 



• • • •   
   
   

 

We start with  
1

3 1 0
= = .

1 0 0 3
B A

   

   

−

• •
−     

     
− −     

 

1

1 1

2

1 0 3 1 0 1
= = = = .

0 1 1 0 1 3
A B C M





−

• • − −
−     

     
−     

 

 

As ( ) = ( )tr B A tr A B• • • •
, we have, because we suppose 0   and = 1  : 

 3 = 3 ,  −  hence = 1 −  and = 6 . −  

We can give new parameters defining A•
, and new ones defining B•

: 

1

1

0 1
= = = = .

1 3

t u k l kt mu lt nu
B A M

v w m n kv mw lv nw 

• • −
+ + −       

       
+ +       

 

1

2

0 1
= = = = .

1 3

k l t u kt lv ku lw
A B M

m n v w mt nv mu nw 

• • −
+ +       

       
+ + −       

 

We write these two equations in dimension 4  and invert the matrices, after defining   and verifying that 

3 1
= det = det = = det { 1},

1 0

k l
CA kn lm A

m n


 • •

−   
−     

   
 

11= det = det = det , det = { 1}.C A B B B − • • • •    

0 0 0

0 0 1
( ) : = = ,

0 0 1

0 0 3

kt mu k m t

kv mw k m u
B A

lt nu l n v

lv nw l n w 

• •

+       
       

+
       
       + −
       

+       

 

0 0 0

0 0 1
= = .

0 0 1 3

0 0 3 3

t n m m

u l l l

v n m n m

w l l k l




 

−       
       

− −
       
       − − −
       

− −       
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0 0 0

0 0 1
( ) : = = ,

0 0 1

0 0 3

kt lv k l t

mt nv m n u
A B

ku lw k l v

mu nw m n w 

• •

+       
       

+ −
       
       +
       

+       

 

0 0 0

0 0 1 3
= = .

0 0 1

0 0 3 3

t n l l

u n l n l

v m k k

w m k k m




 

−       
       

− − −
       
       − −
       

− −       

 

Now we solve: 

3
= = .

3

3 3

m l t

k n l u

n m k v

k l k m w






 

     
     

− −
     
     − −
     

− −     

 

This gives =m l  and = 3n l k −  for A•
, so an expression of A•

with two new parameters is as follows: 

 =k   and = .l   

= = ,
3 3

k l
A

l l k

 

   

•    
   

− −   
    (2) 

For B•
, it is also easy to write it with the same two parameters:  

1
3

= = = ,
3

t u
B

v w

    


    

−

•
− −     

     
− −     

 (3) 

1 1

22 2

3 1
= = { 1 }.

3 3

    


       

− −
− −   

−     
− − − +   

 

 
2

2det = ( (3 ) ( )) = ( (3 ) ( ) = det = { 1 }.A B           • •− − − −    (4) 

•  A simpler calculation is possible, here presented in order to confirm the previous one: 

1
0 1

= = ,
1 3 3 ( 3 )

t u k l m k

v w m n n m l k


  

−
− −       

       
− − −       

 

1
0 1 3

= = ,
1 3 ( 3 )

t u k l l n l

v w m n k m k




 

−
−       

       
− − − −       

 

= = , 3 = = 3 = .m l n m k n l   − − − −  

Hence, we obtain (2), (3), (5) more completely than (4), and with the expressions for B•
 and A•

:  

2 2det = det = = ( 3 ) { 1}.A B    • • − + −    (5) 

1 1

1 1

1 2= = = ,
t u k l k l

B M M
v w m n m n

− −

• − −     
     
     
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1 1

2 1 1 2= = , = = .B M A A M A M B B M•− • • •− • •  (6) 

We find also some new expressions which are easy to establish:  

=
3 3

A B
   


     

• •
−   

   
− − −   

 

1
0 1

= = ,
1 3

C 


− 
 
− 

 or 2= 1 ,A B C• •
 

1

1

2

3 1 0 1
with = = ,

1 0 1 3
M





−

−
−   

   
−   

 

𝑀2 = 𝐵•−1𝐴•−1 ∈ 𝑆𝐿(2, ℤ). (7) 

1
0 1

= = = ,
3 3 1 3

B A C
   

  
      

• • −
− −     

     
− − −     

 

then, defining K : 

3 1 0 1 1 6
= = ,

1 0 1 3 0 1
K

 



− − − −     
     

−     
 or = ,CB A K• •

 

where: 
1

1 1

2 1 2 1

3 1 0 1 3 1
= , = = , = .

1 0 1 3 1 0
M M K M M

 



−

− −
− −     

     
−     

 

1 1

1 = (2, ).M A B SL•− •−  Z  (8) 

1 1 1 1

2= 1 , = , = = [ , ].A B C CB A K K B A B A B A• • • • •− •− • • •− •−
 (9) 

•  The asymmetric position of   at the front of B•
, not A•

, provokes a question. Replacing B•
 by 

1B•−
 is the answer to the question. The 

condition  for 1M  and 2M  to be in (2, )SL Z  does not imply the same property for A•
 and B•

. These matrices are in 𝐺𝐿(2, ℤℤ)\𝑆𝐿(2, ℤℤ) 

when their determinant   is 1− , and they are in 𝑆𝐿(2,ℤℤ) when = 1 . We have two cases, owing to the fact that   can have two values, 1 . 

In the two cases we exhibit a non trivial example. 

Example 1. −  With = 5, = 2, =1,    we obtain = 1:  

5 2 2 5
= = , = = ,

3 2 1 3 5 13

a b b a
A B

b a b a a b 

• •
− −       

       
− + − − −       

 

2 2= det = ( 3 ) = det =1, , (2, ).A a ab b B A B SL • • • •− − +  Z  

2 2 2( ) ( ) ( ) ( ) ( ) ( )tr A trA B trB tr A tr A B tr B• • • • • • • •+ + −  

2 2 2= 6 3 15 6 3 15+ + −    

2 2 2 2= 3 ( 1 3 1) = 0.   + + −     

We obtain a formula linking together the matrices A•
 and B•

, situated in (2, )SL Z . With = =C C A B• • •
, this gives the triple 

1 1 1( , , )B A B A•− • •− •−
 introduced in ( [17] Chap. 6. page 162), associated to (5,2,1) . W 

Example 2. −  With = 35, = 6, = 2,    we obtain = 1 −  and :  
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35 6
= = ,

3 6 1
A

 

  

•    
   

− +   
 

6 35
= = ,

3 35 204
B

 


  

•
− −   

−   
− − −   

 

2 2 2( ) ( ) ( ) ( ) ( ) ( )tr A trA B trB tr A tr A B tr B• • • • • • • •− + −  

2 2 2= 36 6 210 36 6 210 = 0− + −    

2 2 2 2= 6 ( 3 2 ) 6 .   −    + −  

We obtain a formula linking together the matrices A•
 and B•

, which are situated in 𝐺𝐿(2, ℤℤ)\𝑆𝐿(2, ℤℤ).   W 

In both cases, we can evaluate  : 

Property 2. −  For , (2, ),A B GL• • Z  identified before, we have the relation of Fricke with signs: 

2 2 2( ) ( ) ( ) ( ) ( ) ( ) = 0.tr A trA B trB tr A tr A B tr B• • • • • • • •+ + −  (10) 

Proof. We compute:  
2 2 2( ) ( ) ( ) ( ) ( ) ( )tr A trA B trB tr A tr A B tr B• • • • • • • •+ + −  

( )2 2 2 2 2= (3 ) ( 3 3 ) (3 )      + − − + +  

( )2 2(3 )( 3 3 (3 ))     − − − +  

2 2 2= (3 ) (( ) ( ) ( )( )(3 ))      + + −  

2 2 2 2= (3 ) (( ) ( )( )(3 ) ( ) ) = (3 ) ( ) = 0.         − + + − + W 

This proves the claim. 

3   Links with the Fibonacci numbers 

Two cases have been defined owing to the fact that   can have two values, 1 . To determine   and  , we got a Diophantine equation (4) 

which is easy to solve. 

3.1   First case ( = 1 ) 

We find det( ) = det( ) =1A B• •
, and A•

, (2, ).B SL• Z  We deal with the Diophantine equation 

2 2( 3 ) = 1.  − + −  

It has been already studied in [2], and we have: 

Property 3. −  The Diophantine equation 
2 2( 3 ) = 1  − + −  has solutions if and only if = 1  . 

Proof.  The references ([2], Theorem 6.3.1. p. 150) [21], [16]) give all that is needed about the solutions.  W 

•  Any solution ( , )   of this equation corresponds by a 1  to 1  correspondence to ( , ) − , a solution of the equation 

2 2( 3 ) = 1  − + − . We have only to look at our equation 
2 2( 3 ) = 1  − + − , to get all the solutions of the other. Moreover, the 

matrices A•
 and B•

 are in (2, )SL Z . It is interesting to realize that with = 1 , 

1 1= 3 , = 3 , = 3, ( ) = 2.trA b trB a trA B tr A B A B• • • • • • •− •− −  

Applying Fricke’s formula ([17] p. 160, Prop. 2) and simplifying,  
2 23 = 1 = .   − + − −  (11) 

This equation is solvable in integers with a method obtained from the classical Markoff theory. The solutions are written with the Fibonacci sequence 

(OEIS A000045). We find in [2], [16], all the solutions: (1,1),( 1, 1)− −  and for all 1n  :  

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1( , ), ( , ), ( , ), ( , ).n n n n n n n nF F F F F F F F− + + − − + + −− − − −  
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For = 1n , we get  

1 3 3 1( , ) = ( 1, 2), ( , ) = ( 2, 1),F F F F− − − − − − − −  

1 3 3 1( , ) = (1,2), ( , ) = (2,1).F F F F  

For all the couples of solutions, if ( , )   is one of them ( , ) − −  is another: 

( , ), (3 , ), ( ,3 ) and ( , ), ( , 3 ), ( 3 , ) solutions.               − − − − − − − −  

We find a figure with four sequences connected at the end of each other, at the singular solution (1,1) . But with bisequences ( )n nF Z, defined as 

indexed by ℤ, the Fibonacci bisequence gives 

4 3 2 1 0 1 2, = 3, = 2, = 1, =1, = 0, =1, =1,F F F F F F F− − − −− −  

∀𝑛 ∈ ℤℤ,  𝐹2𝑛+1 = 𝐹−(2𝑛+1),  𝐹−2𝑛 = −𝐹2𝑛. 

Hence we can write, on the upper infinite dihedral group C , a bisequence 2 1 2 1( , )n nF F+ −  to name the nodes of C , but this constrains us to use 

the second group C  for the other bisequence 2 1 2 1( , )n nF F+ −− − . We will give another notation in the sequel, where 2 1 2 1( , )n nF F+ −  will be 

replaced by 2 1 2 1( , )n nF F− +  if and only n  is even, and so on for the three couples obtained by permutation of 2 1nF +  and 2 1nF − , and multiplication 

of the two terms of the couple by 1− . With this method we find a bisequence of pairs of positive Fibonacci numbers which are the positive solutions 

of the equation 
2 2( 3 ) = 1.  − + −  This corresponds to the infinite cyclic group C+ , in the upper position in Figure 1. 

5 7 7 5

3 5 5 3

1 3 3 1

1 1

2 2 2

1 1

1 3 3 1

( , ) = (5,13) ( , ) = (13,5)

(2,5) = ( , ) (5,2) = ( , )

(1,2) = ( , ) (2,1) = ( , )

(1,1) = ( , )

singular

( 1, 1) = ( , )

( 1, 2) = ( , ) ( 2, 1) = ( , )

F F F F

F F F F

C

F F F F

F F

C C C

F F

F F C F F

+

− −

− − − − −

  

− −

− − − − −

Z [

Z [

^ [

[ ^

 

 

Figure: n∘1: Set of solutions of 𝛼2 − 3𝛼𝛽 + 𝛽2 = −1 

 

We see with the negative Fibonacci numbers a structure of a group isomorphic to 𝐶+∞ × 𝐶2 ≃ ℤℤ × ℤℤ/2ℤℤ. We can also say that the matrix 2M  

operates on the set of solutions. 

 

Remark 1. −  We have given in [20] the relation 

6 9 6 7 6 5= 3 .n n nF F F− − −−  

Together with the same relation for 6 7nF −  

6 7 6 9

2

6 5 6 7

3 1 3 1
= where = ,

1 0 1 0

n n

n n

F F
M

F F

− −

− −

− −      
      

      
 

it gives relations fixing the orientation of the action of 2M , realizing the infinite cyclic group :C  

3 1 1 1 3 1 1 2
..., = , = ,...

1 0 2 1 1 0 1 1

− −           
           
           

 

The commutative group 𝐶2 × 𝐶+∞ ≃ ℤℤ/2ℤℤ× ℤℤ, operates on solutions of the equation 
2 23 = 1.  − + −  It is not the corresponding 

infinite dihedral group 𝐷∞ ≃ 𝐶2 × 𝐶+∞ ≃ ℤℤ/2ℤℤ ⋊ ℤℤ, not studied here.  W 
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3.2   Second case ( = 1 − ) 

We find det( ) = det( ) = 1A B• • − , and A•
, (2, ) \ (2, ).B GL SL• Z Z  We deal with the Diophantine equation  

2 2( 3 ) =1 = .   − + −  (12) 

This equation has been studied in [2] (pp. 130–150), and we have: 

Property 4. −  The Diophantine equation 
2 2( 3 ) = 1  − +  has solutions if and only if 3 2  .      

Proof.  The reference [2] gives all that is needed about the solutions.      W 

•  We deal with matrices situated in (2, )GL Z  but not in (2, )SL Z . We give the continued fraction of  , the root of 

2( ,1) = 3 1X X X − + : 

23 (9 4)
= = [3 1,1,3 2].

2

 
  

+ −
− −  

We produce then the classical table of the values of the associated form. For = 1  we have 2 3 = 1− − , and we find with the following table 

two classes of solutions, couples of Fibonacci numbers up to signs, of the equation 
2 23 = 1  − + −  of the first case: 

 

( )
( )

( )

2 2

2 2

2

2 2

2
2 2

3 1] = 3 1 = : 3 = 2 3

3
3 1,1] = = : 3 = 1

1

9 3 1
3 1,1,3 2] = = : 3 = 2 3

3 1

(9 1)
3 1,1,3 2,1] = = : 3 = 1

3

p
p pq q

q

p
p pq q

q

p
p pq q

q

   

 
   



 
   




  



− − − + −

− − +

− −
− − − + −

−

−
− − − +

 

We see that the matrix 2=C M  plays an important role for the transportation of the period of  :  

1
3 1 1 1 1 3 2 1 3 1 1

1 0 1 0 1 0 1 0

  
−

− − −       
       
       

 

2

3 1
= = = .

1 0
C M

 − 
 
 

 

This gives all the solutions of the equation 
2 23 = 1  − + − , with a sign 1  corresponding to the cycle 2C  and the infinite cycle C+  

given by 2M : 

2

2 2 2

0 1 1 3 3 9 1
..., = , = , = , ...

1 0 0 1 1 3
M M M

  



 −         
          

−           
 

In the present case, det( ) = det( ) = 1A B• • − . We would like to be able to apply some relation similar to Fricke’s formula, for example, the last 

expression of [17] (p. 28). 

3.3 A general Fricke’s equation 

But a formula such as that one which will be true for 𝐺𝐿(2, ℤℤ) is more complicated, and does not seem to be given in any of the numerous articles 

written about Fricke’s formula. Working on this, we found: 

Property 5. −  For any matrices , (2, )A B GL Z , we have the generalized Fricke’s formula: 
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1 1

2 2 2

[ , ] 2 = ( ) 2

= det( ) ( ) det( ) ( ) det( ) det( ) ( )

det( ) det( ) ( ) ( ) ( ).

tr A B tr ABA B

A tr A B tr B A B tr AB

A B tr A tr B tr AB

− −+ +

 +  +  

−    

 

Proof. Let 

= , = , = ,
t u t v u w

A B AB
m n v w mt nv mu nw

     + +     
     

+ +     
 

= , det = , = , det = ,trA n A n m trB t w B tw uv  + − + −  

( ) = , det = det det ,tr AB t v mu nw AB A B + + +  

 
1 1ABA B− −

 

1 1

2 2= ( ) ( )
t v u w t u

n m tw uv
mt nv mu nw m n v w

     
 

− −
+ +     

− −     
+ +     

 

= ( ) ( )
t v u w n w u

n m tw uv
mt nv mu nw m v t

    
 



+ + − −     
− −     

+ + − −     
 

= ( )( ) ,
t v u w v nw t nu

n m tw uv
mt nv mu nw v mw t mu

     
 

 

+ + + − −   
− −    

+ + − − +   
 

 
1 1( )tr ABA B− −

 

2 2 2= ( )( )( 2n m tw uv uv tv vw mtu muw ntw v        − − − + − + − + +  

2 2 2 2 2 )mt mw ntv nvw m u mntu mnuw n uv   − − − + + − + −  

= ( )( ) ,n m tw uv − −   

2 2 2= 2uv tv vw mtu muw ntw v       − + − + − + +  

2 2 2 2 2 ).mt mw ntv nvw m u mntu mnuw n uv   − − − + + − + −  

Then 
2 2det ( ) det ( )A tr A B tr B +   

2det det ( ) det det ( ) ( ) ( )A B tr AB A B tr A tr B tr AB+   −    

2 2= ( )( ) ( )( )n m n tw uv t w  − + + − +  

2( )( )( )n m tw uv t v mu nw   + − − + + +  

(( )( )( )( )( ))n m tw uv n t w t v mu nw    − − − + + + + +  

2 2= ( )( ) ( )( )n m n tw uv t w  − + + − +  

( )( )( )( )tw uv n m w v mu nt t v mu nw     − − − − − + + + +  

( )( )2 2= ( )( ) ( )( ) ,n m n tw uv t w tw uv n m    − + + − + + − −   

With 
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= ( )( )t v mu nw v w mu nt    + + + − + −  

2 2 2 2 2= tw tv vw mtu muw nt nw v       − + − + − − − +  

2 2 22 ,muv ntv nvw m u mntu mnuw n tw  + − + + − + −  

and so we find  
2 2 2 2= ( )( ) ( )( ) 2 2n tw uv n m t w ntw muv    − − + − − − + − +  

2 2( ) ( ) ( )( )n tw uv n m t w  − + − − − +  

2 2 2 ( ) 2 ( )ntw muv n tw uv tw n m    − + + − + −  

( )( )2 2= ( ) ( ) ( )( ) 2 .n tw uv n m t w tw uv n m    − + − − − + + − −  

Now we combine: 

1 1 22 ( ) det det ( )tr ABA B A B tr AB− −− − +    

det det ( ) ( ) ( )A B tr A tr B tr AB−    

( )( )= 2 ( )tw uv n m − + − − −  

( )( ) 2= 2 ( ( ) ( )tw uv n m n tw uv  − + − − − + −  

( )( )2( )( ) 2 )n m t w tw uv n m   − − + + − −  

2 2= 2 (( ) ( ) ( )( ) 2)n n m tw uv t w  − − + − + − + +  

2 2= det ( ) det ( ) ,A tr A B tr B−  −   

and we get 
2 2 2det ( ) det det ( ) det ( )A tr A A B tr AB B tr B +   +   

1 1det det ( ) ( ) ( ) = 2 ( )A B tr A tr AB tr B tr ABA B− −−   + W 

Here, the commutator to deal with is 
1 1[ , ] =A B ABA B− −

. And we are in the parabolic case if and only if ([ , ]) = 2tr A B − . 

Example 3. −  With = 1  and for example = 5, = 2, =1:    

𝛿 = 1 = −(𝛽2 − 3𝛾𝛽𝛼 + 𝛼2) = 𝑑𝑒𝑡 𝐴• = 𝑑𝑒𝑡 𝐵• ,  𝐴•, 𝐵• ∈ 𝑆𝐿(2,ℤℤ). 

2 2 2( ) ( ) ( ) ( ) ( ) ( )tr A trA B trB tr A tr A B tr B• • • • • • • •+ + −  

2 2 2 2= 3 (5 2 1 3 5 2 1) = 0.+ + −     

We are in the case of the positive Fricke’s relation, linking together the matrices A•
 and B•

, situated in (2, )SL Z . With =C A B• •
, the triple 

( , , )B A B A• • • •
 introduced in ([17] Chap. 6. page 162), is associated to (5,2,1) . W 

Example 4. −  With = 1 −  and for example = 35, = 6, = 2    :  

 𝛿 = −1 = −(𝛽2 − 3𝛾𝛽𝛼 + 𝛼2) = 𝑑𝑒𝑡 𝐴• = 𝑑𝑒𝑡 𝐵•   𝐴•, 𝐵• ∈ 𝐺𝐿(2,ℤℤ)\𝑆𝐿(2,ℤℤ). 

2 2 2( ) ( ) ( ) ( ) ( ) ( )tr A trA B trB tr A tr A B tr B• • • • • • • •− + −  

2 2 2 2= 6 (35 3 2 35 6 6 ) 6 = 0.−    + −  

We obtain a formula linking together the matrices A•
 and B•

, which are situated in 𝐺𝐿(2,ℤℤ)\𝑆𝐿(2,ℤℤ).   W 
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Remark 2. The cases with which we deal in Property 2 and Property 5 are different. In the first case, A•
 and B•

 are linked with strong constraints 

by the common coefficients   and  , and their positions inside these matrices. On the contrary, Property 5 is true for any matrices 𝐴, 𝐵 ∈

𝐺𝐿(2,ℤℤ). W 

Example 5. −  With = 1  and for example  

11 3 37 11
= (2, ), = (2, ),

7 2 10 3
A SL B SL

   
    

   
Z Z  

1 1
1298 4799

([ , ]) = ( ) = = 1767 2,
829 3065

tr A B tr ABA B tr− −
− 

 − 
− 

 

we are not in the parabolic case. Moreover, we verify Property 5: 

2 2 2det ( ) det det ( ) det ( )A tr A A B tr AB B tr B +   +   

1 1det det ( ) ( ) ( ) = 2 ( )A B tr A tr AB tr B tr ABA B− −−   +  

2 2 2=13 520 40 13 520 40 =1769 = ([ , ]) 2.tr A B+ + −   + W 

4 Final result for the free group with two generators  

We face the fact that the group ( , )gp A B• •
 generated by A•

 and B•
 is free. By Property 1 and 

1 1( ) = 2tr A B A B• • •− •− − , A•
 and B•

 

generate the free group 2 = [ (2, ), (2, )] = ( , )SL SL gp A B• •Z ZF  in (2, )SL Z . This group countains 
1 1

1 =M A B•− •−
 and 

1 1

2 =M B A•− •−
. 

Property 6. −  The subgroup 1 2( , )gp M M  of 2F  is free and isomorphic to 2 = ( , )gp A B• •F , but not equal to 2F . 

Proof. The group 1 2( , )gp M M  generated by 1M  and 2M  is a subgroup of 2F , hence by the theorem of Nielsen–Schreier ([14] p. 92), it is a 

free subgroup of 2F . But 2 1[ , ] = 38tr M M  confirms with Property 1  that 1 2( , )M M  is not a system of generators of 2F . W 

•  A confirmation that 1 2( , )gp M M  is a free group is not given by the properties of the commutator of 1M  and 2M : 

2 2 2

1 2 1 2 1 2 1 2( ) ( ) ( ) ( )( )( )tr M trM trM M tr M trM trM M+ + −  

2 2 2= 3 3 11 3 3 11=139 99 = 40.+ + −   −  

and not through Property 1, because 
1 1

2 1 2 1 2 1[ , ] = =M M M M M M− −
 

1 1
3 1 3 1 3 1 3 1

=
1 0 1 0 1 0 1 0

− −
− −       

       
− −       

 

2 1

19 60
= , or [ , ] = 38.

6 19
tr M M

 
 
 

 

The rank, which is the number of generators of a free group, is 2  for 2F . The index of the subgroup 1 2( , )gp M M  of 2F , denoted by 

2 1 2= [ : ( , )]k gp M MF  may be used: 

•  1/ Suppose k is infinite. We are in a situation where 2F  is a free group and 1 2( , )gp M M , not a group with one element, has infinite index in 

2F . Then 1 2( , )gp M M  is of infinite rank ([4] p. 355). But this is false, because this group has two generators 1M  and 2M  hence a rank less 

than 2 . This case is impossible. 

Note that in 2F , the derived group,  

2 2 2( ) = ([ , ] | , ) ,D gp x y x y F F F  
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has infinite rank ([4] Théorème (9.39) p. 355 or [15] prop. 3.1. p. 13): 

2( ( )) = .rank D F  

 

•  2/ Suppose k is finite. We have ([15] Proposition 3.9. p. 16): 

1 2
2 1 2

2

( ( , )) 1
[ : ( , )] = =1.

( ) 1

rank gp M M
k gp M M

rank

−
=

−
F

F
 

Because our free groups 1 2( , )gp M M  and 2F  have two generators, the former relations give :  

2 1 2 2 1 2[ : ( , )] =1, then ( , ).gp M M gp M M;F F  

1 2 2 1 2( ( , )) = [ : ( , )] 1 = 2.rank gp M M gp M M +F  

The conclusion is that 2 1 2( , )gp M M;F , not 2 1 2= ( , )gp M MF . It would be more comforting if A•
 and B•

 could be written with words 

in 1M  and 2M . The conclusion would be an equality. But this does not happen: only the isomorphism is sure. W 

•  Property 1 is verified with A•
 and B•

, not 1M  or 2M , and we have (6). If we could write A•
 as a word of 1M  and 2M , 

1 2= ( , )A A M M• •
, we could write B•

 the same way, and conversely:  

1 1 1 1 1 1

1 1 1 2 1 2 2= = ( , ) = ( , ) = ,B M A M A M M B M M A M• − •− − • − • •− −
 (13) 

1 1 1 1 1 1

2 2 1 2 1 2 2= = ( , ) = ( , ) = .A M B M B M M A M M M B• − •− − • − • − •−
 (14) 

We would like to conclude that 1 2( , )A gp M M•  and 1 2( , ),B gp M M•  so 2 1 2= ( , ) = ( , )gp A B gp M M• •F . But this is not true, 

and we have only 

1 2 1 2( , ) and ( , ).A gp M M B gp M M• •   

Remark 

2 1 2 2( , ) ( , ), ( ) 2,gp A B gp M M rank• • = =;F F  

2 1 2 1 2[ : ( , )] ( ( , )) 1 .gp M M k rank gp M M k=    = + F  
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