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Abstract 

Neurotrauma has been well linked to the progression of neurodegenerative disease. Much work has been done 

characterizing chronic traumatic encephalopathy, but less has been done regarding the contribution to Alzheimer’s 

Disease. This review focuses on AD and its association with neurotrauma. Emerging clinical trials are discussed 

as well as novel mechanisms. We then address how some of these mechanisms are shared with CTE and emerging 

pre-clinical studies. This paper is a user-friendly resource that summarizes the emerging findings and proposes 

further investigation into key areas of interest. It is intended to serve as a catalyst for both research teams and 

clinicians in the quest to improve effective treatment and diagnostic options.  
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Introduction 

Alzheimer’s Disease (AD) remains as the most prevalent cause of 

dementia worldwide and continues to be a significant health burden to 

society. Research in recent decades has significantly advanced our 

understanding of the pathophysiology of AD and its two 

neuropathological hallmarks: extracellular aggregations of insoluble 

forms of amyloid-β peptide (Aβ), known as Aβ or senile plaques, and 

intracellular neurofibrillary tangles (NFTs) predominantly comprised of 

hyperphosphorylated tau protein (p-tau). [1] First hypothesized by Hardy 

and Higgins in 1992, the long-standing amyloid cascade hypothesis 

(ACH) postulates that senile plaques are the causative agent of AD and 

the neurodegenerative sequelae that follow. 2 While this is the most 

favorable explanation for familial AD, studies have yielded conflicting 

results as to whether Aβ plaques are the initiator or consequence of 

sporadic AD, but it is generally agreed that they play an unequivocal role 

in both forms of AD.  

Discoveries in AD research further elucidated the potential mechanisms 

behind other neurodegenerative diseases; namely, chronic traumatic 

encephalopathy (CTE). CTE is a sporadic tauopathy associated with 

repetitive minor head trauma and is most frequently seen in athletes of 

high-impact sports, such as boxing or American football, and victims of 

domestic violence. [3] While usually clinically indistinguishable, CTE 

and AD are neuropathologically distinct. CTE is characterized by 

perivascular p-tau deposition in the sulcal regions of the cerebral cortex, 

found irregularly within surrounding neuronal cell and cell process NFTs. 

[3] By contrast, AD demonstrates a progressive but specific distribution 

pattern of Aβ plaques and p-tau NFTs that begins in the transentorhinal 

region early on and spreads to virtually all isocortical association areas by 

the terminal stages. [4] This distinction led to the recognition of CTE as a 

separate diagnosis from AD in dementia patients, although both 

conditions may only be confirmed by post-mortem examination. [5,6]  

Improvements in our understanding of the pathologic hallmarks of AD 

led to the development of multiple antibody drug therapies aimed at 

preventing or reducing Aβ plaque load in the brain, which have proven to 

be largely ineffective in altering the course of AD. [7,8] Like other early 

models for monoclonal antibody drugs, solanezumab targeted soluble 

forms of Aβ, which proved ineffective in two phase III trials. [8] A phase 

III clinical trial for gantenerumab, a human monoclonal antibody that 

instead binds to aggregated forms Aβ and removes plaques via Fc-

receptor phagocytosis, did not demonstrate efficacy either and was 

terminated prematurely for futility.9 Based on compiled statistical data 

from clinical trials, the most recent evidence suggests that a general 

reduction in Aβ plaques does not significantly improve cognition, 

suggesting that Aβ alone may not be the right target. [10] Or, as some 
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newer articles theorize, we may be targeting the wrong hormetic form of 

Aβ. [11] 

Perhaps the most controversial drug is aducanumab, a monoclonal 

antibody targeting aggregated forms of both soluble and insoluble Aβ. 

The drug received accelerated FDA approval for the treatment of AD in 

2021[12]. despite conflicting results from its two phase III clinical trials 

and lack of established correlation between reduced plaque load and 

cognitive improvement[13]. The decision elicited a substantial outcry 

from the research community, and a case for the accelerated withdrawal 

of aducanumab was published by early 2022[14]. Despite its controversy, 

the drug was found to have a downstream effect on p-tau levels in 

cerebrospinal fluid (CSF), which has major implications in the treatment 

of other neurodegenerative disorders aberrantly expressing p-tau, such as 

CTE [15,16]. These developments have led researchers to explore tau 

hyperphosphorylation and other biochemical mechanisms as potential 

targets for drug therapies in AD, CTE, and related neurodegenerative 

disorders. 

Emerging clinical trials in Alzheimer’s Disease 

Several emerging treatment targets for AD are currently under early 

investigation in clinical trials. Two central themes in AD pathology are 

amyloid aggregation and neuroinflammation, which together cause 

dysregulation of homeostasis and establish a neurotoxic environment. 

Here, we highlight some recent advances in the targeting of these two 

domains. 

Targeting amyloid pathways 

Amyloid-β oligomer (AβO) deposition is thought to promote neuronal 

death by disrupting mitochondrial and lysosomal membrane 

integrity,[17,18]. causing endoplasmic reticulum dysfunction, [18,19].  

inducing a high intracellular calcium state, [20]. and promoting pro-

inflammatory oxidative stress [21]. Targeting this amyloid pathway may, 

in turn, confer a neuroprotective benefit in AD patients. To this end, 

CT1812 is a small molecule sigma-2 receptor antagonist which is recently 

under investigation in a phase 2 trial for its role in synaptic AβO clearance 

[NCT03507790]. In preclinical studies, though treating cultured neurons 

with human AD-derived AβO led to vesicle trafficking deficits, these 

deficits were abolished when cultures were pretreated with CT1812.22 In 

addition, CT1812 improved synaptic density in neuronal mouse cultures 

by displacing AβO from receptors, facilitated AβO clearance into CSF in 

vivo mouse models, and improved cognitive performance in a mouse 

model of AD [22]. Promising data from a phase 1b trial of 19 patients 

receiving placebo or CT1812 for 28 days revealed improved AβO 

clearance into the CSF of patients receiving CT1812 [22]. However, 

higher-powered studies with longer treatment durations focusing on 

cognitive outcomes are necessary and are already underway. 

Other variants of Aβ have recently come under interest as treatment 

targets. In particular, amyloid precursor protein (APP) can be cut by 

secretases and modified by glutaminyl cyclase to form pyroglutamylated 

forms of Aβ (pE-Aβ), a particularly cytotoxic variant of Aβ known to 

induce synaptic dysregulation [23,24]. Recently, the small molecule 

glutaminyl cyclase inhibitor PQ912 has been explored as a potential 

treatment of AD. One preclinical study of a transgenic AD mouse model 

treated with PQ912 displayed promising results, both decreasing pE-Aβ 

in vivo and improving cognitive performance [25]. Another recent phase 

2 study of PQ912 of 120 patients randomized to PQ912 or placebo groups 

reported no significant adverse events (AE) for the PQ912 group, a 

significant reduction in glutaminyl cyclase activity, and a reduction in the 

glial activation marker YKL-40 [24]. Notably, though PQ912 was 

associated with improved performance on the one-back cognitive test, 

there were no differences between PQ912 and placebo groups in the mini-

mental state examination (MMSE) scores [24]. A phase 2A study for use 

of PQ912 to assess cognitive function in early AD patients is underway 

[NCT03919162]. 

 

A novel proteopathy has been recently implicated in the progression of 

AD. Filamin A (FLNA) is a scaffolding protein thought to be altered in 

AD. Altered FLNA allows for Aβ and nAChR-mediated neurofibrillary 

tangle formation with activation of TLR4 and subsequent 

neuroinflammatory marker release [26]. PTI-125 is a small molecule 

which resets the altered variant of FLNA back to normal [26] and, in a 

transgenic AD mouse model, improved certain cognitive performance 

measures, reduced neuroinflammation, and decreased other biomarkers of 

AD progression [27]. In a recent phase 2a study consisting of 13 AD 

patients treated with 28 days of PTI-125, no drug related AE were 

observed [28]. Treatment with PTI-125 was appropriately associated with 

the reduced presence of altered conformation FLNA. Importantly, 

markers of AD progression including tau, neuroinflammatory cytokines 

such as IL-1B, IL-6, and TNFa, neurogranin, and neurofilament light 

chain were significantly reduced following 28 days of PTI-125 treatment 

in this study [28]. Though cognition was not evaluated in this study, a 

current phase 2b study seeks to add to previous work by randomizing a 

larger number of participants, assessing CSF markers of AD progression, 

and evaluating cognition [NCT04388254].
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Figure 1: Molecular pathways of amyloid-targeting emerging therapeutics. Abbreviations: Aβ, amyloid β; pE-Aβ, pyroglutamylated forms of Aβ; 

QC, glutaminyl cyclase; TLR4, toll-like receptor-4; nAChR, nicotinic acetylcholine receptor; FLNA, filamin A; NFT, neurofibrillary tangle 

Targeting neuroinflammatory pathways 

Neuroinflammatory pathways have become an important drug target due 

to their prevalent role in the progression of AD [29]. One hallmark of AD 

is an elevated burden of fatty acid oxidation and synthesis. While fatty 

acids are crucial for proper brain and neuron function, high levels of fatty 

acid oxidation both modulates inflammatory processes and promotes 

neurodegenerative mechanisms [30,31]. CMS121 is a small molecule 

fatty acid synthase inhibitor which reduces oxidative damage by 

preventing excess lipid peroxidation [31]. Administration of CMS121 in 

neuronal and microglial cells as well as a transgenic AD mouse model led 

to decreased markers of lipid peroxidation and neuroinflammation. 

Spatial learning and memory tests of APPswe/ PS1ΔE9 transgenic mouse 

models treated with CMS121 also revealed improved cognitive function 

compared to wild type mice [31]. A phase 1 trial is currently underway to 

evaluate the long-term safety of this drug in healthy patients 

[NCT05318040].  

AD has an impact on multiple pathways in the immune response. 

Therefore, treatments targeting the immune response from multiple 

angles may represent a more promising immunomodulatory approach. 

Recently, the antineoplastic TNFa inhibitor lenalidomide has come under 

interest for the treatment of AD due to its pleiotropic effects of modulating 

both innate and adaptive immune responses [32,33]. Notably, 

lenalidomide simultaneously lowers the expression of pro-inflammatory 

agents (TNFα, IL-6, and IL-8) and increases the expression of anti-

inflammatory cytokines (IL-10) [33]. Preliminary results in vivo 

transgenic AD mouse models treated with lenalidomide showed 

significant decreases of key markers of AD progression including BACE1 

and Aβ plaques as well as pro-inflammatory markers such as TNFa [33].  

Despite this, special care should be exercised in further work considering 

some reports of lenalidomide-induced cognitive impairment [34]. A phase 

2 trial is currently in progress to determine the efficacy of lenalidomide 

in reversing cognitive impairment in patients with mild to moderate AD 

[NCT04032626]. 

Despite the predominant view that neuroinflammation leads to 

progression of AD, recent work has investigated the pro-inflammatory 

cytokine granulocyte macrophage colony-stimulating factor (GM-CSF) 

as a potential treatment for AD. Interestingly, studies suggest that 

individuals with autoimmune diseases like rheumatoid arthritis (RA) have 

a lower risk of developing AD, [35] and GM-CSF has been shown to be 

elevated in patients with RA [36]. Sargramostim is an FDA approved 

recombinant human GM-CSF, and efforts have been made to determine 

the efficacy of this drug for the treatment of AD. Preclinical data of 

transgenic AD mouse models treated with sargramostim show improved 

cognitive function and increased activated microglia [37,38]. One phase 

2 trial of 40 patients receiving either sargramostim or placebo for 3 weeks 

displayed its immunomodulatory effects, with upregulation of IL-6, IL-

10, and TNFa, and downregulation of IL-8. Importantly, a statistically 

significant cognitive improvement was seen in the MMSE [37]. A safety 

analysis conducted in this study did not display any serious AE or amyloid 

changes on imaging [37]. Despite this, future clinical studies are 

underway to determine the long-term safety and tolerance of the drug on 

patients with mild to moderate AD [NCT04902703]. 

Alzheimer's: Preclinical studies and potential pathways warranting 

further investigation.  

Alzheimer’s disease (AD) is biologically marked by β-amyloid plaques 

and Tau neurofibrillary tangles [39]. As such, efforts till now have largely 

targeted amyloid [40]. Other major targets, according to recent Phase 2 

and 3 clinical trial therapies, focus on amyloid, synaptic 

plasticity/neuroprotection, Tau tangles, and neuroinflammation [41]. 

However, anti-amyloid strategies have been largely disappointing [40]. 



Biomedical Research and Clinical Reviews                                                                                                                                               Copy rights@ Brandon Lucke-Wold et.al. 

 

 
Auctores Publishing LLC – Volume 7(3)-128 www.auctoresonline.org  
ISSN: 2692-9406   Page 4 of 14 

Several other pathways have come to light recently, warranting further 

investigation. These pathways include but are not limited to 

neuroinflammation, [42] oxidative stress, [43,44]. efects in mitochondrial 

dynamics and function, [45]. cholesterol and fatty acid metabolism, 

glucose energetic pathways impairments in the brain, [46,47] autophagy 

failure, [48] and others [49,50]. The following paragraphs will describe 

major pathways with broad highlights, in hopes of pointing out potential 

therapies in pre-clinical models of Alzheimer’s disease.  

Inflammation, especially in the central nervous system, is an acute process 

that physiologically provides protection against infection, toxins, and 

injury [40,49]. However, when the balance between pro- and anti-

inflammatory signals is disrupted, this can lead to chronic 

neuroinflammation, [51,53] which has been strongly linked to AD 

[54,55]. In a pro-inflammatory state, the increased levels of 

proinflammatory cytokines can cause mitochondrial stress via Aβ 

signaling as well as increase oxidative stress and subsequently, blood-

brain barrier (BBB) permeability [56,57]. Moreover, a major pro-

inflammatory cytokine, IL-18, leads to increased Cdk5 and GSK-3β, both 

of which are key players in Tau hyperphosphorylation [57]. While 

neuroinflammation may not trigger AD onset, it seems to play a 

significant role in exacerbating AD progression and/or symptoms via Aβ 

and Tau pathologies [58]. Recent pre-clinical studies have investigated 

curcumin, a polyphenol fund in turmeric, to be potently antioxidant and 

anti-inflammatory [59]. Further investigation is ongoing in terms of its 

role with regards to AD pathogenesis [59]. Another physiologic system, 

that if overactivated, can lead to AD symptoms is the complement system 

[60]. An overactive complement system influences Aβ, Tau, and APOE4, 

which can lead to AD progression [61,62]. Both pathways are propagated 

by non-neuronal supportive cells, which normally protect 

neurotransmission. However, in the setting of inflammatory cytokines 

(e.g.: IL-1β and TNF-α), the physiologic protection of neurotransmission 

is inhibited, leading to AD-related symptoms [52,63].  

Another major focus of pre-clinical research is oxidative stress (OS), 

which has been linked to the prodromal phase of AD and not necessarily 

AD onset [64,65]. Increased OS, due to mitochondrial dysfunction, 

energy metabolism imbalances, or natural aging, can impair several key 

neuronal physiologic functions – namely, neuronal plasticity, cytoskeletal 

structure, and cellular communication [49,66-69]. Neurons, in specific, 

are quite sensitive to OS since the normal antioxidant is low [70]. 

Increased levels of reactive oxygen species (ROS) and reactive nitrogen 

species (RNS) leads to Tau phosphorylation and eventual destabilization 

of microtubules. This causes a major disruption in neuron polarity and 

intracellular trafficking, leading to decreased function of synapses 

[Munoz 32433996]. [66] In addition, Aβ is also tied to ROS and RNS and 

other mediators of OS (e.g.: NOX, TGF-β, NF-kβ, Nrf2). [64,71,72] 

Excess ROS causes oxidization of nucleic acids (which leads to lethal 

damage and promotes protein aggregation) as seen in post-mortem reports 

of AD patients [73]. OS is also tied to several other pathways and thus, is 

an area of further investigation.  

One area that OS is linked to is glucose hypometabolism. High ROS 

levels reduces the concentration/availability of enzymes in the glycolytic 

cascade, leading to glucose hypometabolism [74-76]. In AD, this is 

confirmed via intracellular lesions in a subset of neurons with the highest 

metabolic requirements, that morphologically have elongated, thin axons 

and reduced or absent myelin sheaths [77]. Insulin signaling is another 

area of significant interest due to its association of AD, as Aβ oligomers 

bind insulin receptors, causing internalization of them [78-80]. The 

association of insulin signaling to AD is further supported by observing 

increased AD risk in populations affected by insulin-related comorbidities 

(e.g.: diabetes mellitus) [81]. Ultimately, altered insulin signaling can lead 

to neuroinflammation, which is tied to increased levels of Aβ and GSK3β, 

leading to Tau hyperphosphorylation, as previously mentioned 

[80,82,83]. Thus, insulin signaling is another area that warrants further 

investigation with relation to AD.  

Furthermore, vascular dysfunction or cerebrovascular abnormalities are 

common comorbidities noted with AD, although the precise correlation 

with onset and/or progression of AD symptoms needs to be further 

elucidated [84]. The general principle is thought to stem from the altered 

homeostasis that arises from disrupted blood flow and/or pressure. This 

can lead to microfractures in the BBB also, which lends itself to 

neuroinflammation risk and eventual AD-related symptoms as previously 

mentioned [47,85-87]. In AD specifically, animal models link ROS to 

causing increased levels of advanced glycation end products (AGE) and 

their receptors (RAGE) in vasculature, which is linked to Aβ plaques. 

This is an active area of research, with drugs targeting AGE and/or RAGE 

being tested in clinical trials [41,88-91]. RAGE is also categorized as a 

pattern recognition receptor and is tied to innate immunity and 

inflammation. Lastly, increased levels of AGE and RAGE are tied to AD 

but are also found due to natural aging. This provides another clue as to 

why aging is a risk factor for AD [88,89,92].  

 

Lastly, impaired autophagy has been linked to AD, based on animal 

models and AD patients [64]. APOE4 overexpression leading to Aβ 

accumulation within lysosomes causes neuronal death in the 

hippocampus, especially CA2/3 regions in animal models [93,94]. 

Furthermore, high levels of ROS inhibit autophagosome fusion with 

lysosomes [64]. These two pathways link impaired autophagy to AD. As 

such, current preclinical studies are further looking into restoring 

physiologic autophagosome clearance to curb the progression of 

cognitive symptoms [95]. All in all, AD pre-clinical research spans a wide 

array of topics, including altered neurotransmission and more, displaying 

the complex, multifactorial pathogenesis of AD, lending itself to multiple 

potential therapeutic targets in the future.
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Figure 2: Summary of Select Pre-Clinical Alzheimer’s Disease Pathways 

Chronic Traumatic Encephalopathy  

Diagnostic and Management Considerations 

Chronic Traumatic Encephalopathy (CTE) is a neurodegenerative 

condition characterized by an accumulation of hyperphosphorylated tau 

protein depositions throughout the brain.96 Microscopic and gross 

neuropathological changes originate from exposure to repetitive head 

impacts, leading to a progression of cognitive and neurobehavioral 

deficits [97]. Due to the unique neuropathological phenotype associated 

with CTE, confirmational diagnostic strategies currently require post-

mortem examination [98,99]. Overall, these diagnostic limitations present 

challenges for adequate management and therapeutic intervention. Thus, 

there is a critical need to improve diagnostic strategies through 

comprehensive psychiatric guidelines, imaging modalities, and biomarker 

analysis (Figure 3). 

Neuropsychiatric Diagnosis and Symptomatic Management 

 

Psychiatric evaluation of neurodegenerative diseases offers valuable 

preliminary diagnostic guidance. Previous studies have examined clinical 

features associated with CTE symptomatology to identify criteria 

correlated with cognitive and behavioral dysfunction [100,101]. Clinical 

guidelines were established in 2014 for diagnosis of Traumatic 

Encephalopathy Syndrome (TES), used as a proxy to describe the clinical 

symptoms of CTE [102]. Patients with TES present with progressive, 

cognitive deficits and/or neurobehavioral dysfunction associated with a 

prior history of repetitive head impacts [103]. Past exposure to repeated 

head trauma is of particular significance and the association between 

repeated mild TBI and neurodegenerative diseases is currently being 

investigated [NCT04124029]. Neurological deficits associated with TES 

can be classified into four symptomatic categories, including: cognitive, 

behavior, mood, and motor deficits [104]. Clinical assessments for these 

sequalae include evaluations for memory impairment and executive 

functioning, aggression and depression, and ataxia and dysarthria, 

respectively [100,105]. TES guidelines were validated for diagnostic 

efficacy in 2021, and researchers determined only cognitive symptoms 

were significantly associated with CTE [106]. However, these 

comprehensive criteria do provide useful methodology for excluding 

other neurological disorders and have been beneficial in establishing 

relevant management protocols. Current management strategies involve 

various forms of clinical intervention, including cognitive rehabilitation, 

behavioral therapy, as well as vestibular and ocular therapy [104]. 

Pharmacological agents have also been used for managing CTE, 

including stimulants, dopamine agonists, selective-serotonin reuptake 

inhibitors (SSRI’s [104]. These current management strategies have 

shown success for alleviating the cognitive and neurobehavioral deficits 

experienced clinically, however, none have shown efficacy for treating 

the disease. Thus, current limitations associated with TES guidelines must 

be overcome to ensure the development of effective therapeutic strategies. 
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Diagnostic Imaging Modalities 

Several imaging modalities have been utilized to assess the diagnostic 

efficacy of examining neuropathological features associated with CTE. 

T1- and T2-weighted magnetic resonance imaging (MRI) are particularly 

useful in identifying gross structural changes associated with the disease 

[107]. Indeed, structural MRI indicated ventricular enlargement, cavum 

septum pellucidum and cortical atrophy were all significantly correlated 

with CTE [108]. Cortical atrophy was also shown to be correlated with 

AT8-immunostaining for tau pathology. Diagnostic efficacy for structural 

MRI is currently being investigated to determine how neurostructural 

changes are associated with chronic neurological outcome 

[NCT05235802]. In contrast, diffusion tensor imaging (DTI) may provide 

unique insight into identifying axonal integrity, and the dysfunction 

associated with repeated head impacts, specifically diffuse axonal injury 

(DAI) [109]. Using fractional anisotropy as a metric for evaluating axonal 

integrity, previous DTI studies showed that increased axonal disruption is 

associated with regions of hyperphosphorylated tau deposits [110]. 

Previous studies have also used imaging modalities to identify changes in 

metabolic profiles. Results from magnetic resonance spectroscopy (MRS) 

concluded metabolic changes in the anterior cingulate gyrus; including 

glutamate, glutathione, and myo-inositol, were all significantly correlated 

with behavior and mood domains [111]. Positron emission tomography 

(PET) has also been studied for confirming CTE diagnosis due to the 

molecular specificity associated with ligand binding. Former professional 

National Football League players were shown to have increased uptake in 

Flortaucipir in bilateral superior frontal, bilateral medial temporal and left 

parietal regions when compared against controls [100]. However, uptake 

was not significantly correlated with neuropsychiatric examinations. 

Other imaging molecules, including AV1451 and T807 have been 

validated for diagnosing CTE, but with variable success [112,113]. 

Currently, PET analysis using AV1451 is being investigation through the 

DIAGNOSE-CTE Research project, to be completed in 2023 

[NCT02798185] [114].  

Pathophysiological and Genetic Biomarkers 

Fluid biomarkers, through collection of saliva, blood, and cerebrospinal 

fluid (CSF), have also been examined in patients suspected of CTE to 

assess diagnostic efficacy. Biomarkers associated with axonal injury, 

including tau, and neurofilament proteins light and heavy (NfL and NfH) 

have each been widely studied and associated with CTE [115]. 

Additionally, NfL has shown to be correlated with fractional anisotropy 

measurements from DTI studies, providing further rationale for usage in 

CTE diagnostics [116]. Other biomarkers including glial acidic fibrillary 

protein (GFAP) and s100b have also shown promise for validating 

pathophysiological features associated with CTE, specifically astrogliosis 

[117]. However, phosphorylated tau and amyloid beta remain primary 

diagnostic markers for discerning between CTE and AD [6]. Validation 

of fluid biomarkers is still an area of active investigation and current 

clinical trials are determining the proteomic and transcriptomic profiles 

associated with CTE [NCT04928534]. Additionally, genetic markers, 

including APOEε4 and TMEM106B may also be useful for diagnosing 

CTE, specifically for establishing links between genetic predispositions 

and CTE [118,119]. However, pathophysiologic, and genetic biomarkers 

alone do not possess adequate power for definitively diagnosing CTE. 

Thus, there remains a critical need to optimize and validate effective 

diagnostic and therapeutic protocols through pre-clinical studies.

 

Figure 3: Current diagnostic and management considerations for CTE. Cognitive and behavioral dysregulation associated with CTE was used to 

establish neuropsychiatric criteria for diagnosing TES, and symptomatic management for TES includes clinical and pharmacological intervention. 

Additionally, previous studies have validated the diagnostic efficacy for both imaging modalities and biomarkers and these strategies are currently 

under investigation in active clinical trials. 
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Preclinical Models 

The development of preclinical animal models of CTE is challenging but 

necessary for the further investigation between the pathophysiological 

link between repetitive head trauma and chronic neurodegenerative 

tauopathy. While there are many different preclinical models of TBI, only 

a small subset has utilized repetitive and often mild injury to characterize 

chronic timepoints post-injury where the development of tauopathy is 

predicted to occur in CTE. Preclinical models of repetitive mild TBI 

(rmTBI) to investigate CTE are also a relatively recent development, with 

most experimental models being created in the past fifteen years. The 

experimental models that have investigated tau pathology following 

rmTBI have mainly been conducted in rodents utilizing diverse brain 

injury induction methods with or without genetic modifications in the tau 

gene, transgene expression of human tau (hTau), or overexpression of tau. 

Brain injury induction methods in rodent CTE models include both 

diffuse injuries, such as the fluid percussion injury (FPI), rotational injury 

to include the closed-head impact model of rotational acceleration 

(CHIMERA), and exposure to blast, and more focal brain injuries such as 

closed head injury (CHI), controlled cortical impact (CCI), or weight-

drop models.  

Diverse findings regarding rmTBI and tau pathology have been reported 

in preclinical models. Previous literature reviews have extensively 

covered preclinical CTE model findings from the years 2019 and prior 

[120-124]. Here, we have summarized here additional findings in CTE 

preclinical rodent models from 2020 to the present in Table 1. It is of 

interest to note that there is still conflicting evidence regarding presence 

and pathological severity of tauopathy following rmTBI among 

preclinical studies, with some studies identifying neuronal tau 

accumulation and others finding no differences in tau pathology. These 

differences are likely due to comparisons between models of different TBI 

injury paradigms and differences in TBI severity, timeline of repetitive 

injuries, and selected endpoints.  

In modeling rmTBI with the goal of understanding the etiological link to 

CTE, there should be enhanced care taken in the field regarding 

consistency of parameters between models and a more stringent focus on 

translational capabilities of specific models. For example, rodent 

modeling of repeated rotational TBI may not be optimal in recapitulating 

the same forces and outcomes as human rotational brain injury due to the 

size of the rodent brain and lack of gyri and sulci [126,127], which are 

important not only in altering the way physical forces from the injury are 

distributed across the brain, but sulci and associated gray-white matter 

ratios are also highly associated with tauopathy in human patients 

[127,128]. Another important point in preclinical modeling of CTE is 

translatability in choice of brain injury induction method. Recent 

evidence has demonstrated that the risk of developing CTE is more 

associated with impact TBI, such as concussion events experienced in 

sports, versus blast TBI as experienced due to occupational exposure 

within the military [129]. Therefore, it may be critical to choose brain 

injury induction methods more associated with CTE like focal brain 

injury. Translation of preclinical research findings to better understanding 

of human CTE may also mean expanding the typical CTE model to new 

species whose brains are larger, gyrencephalic, and/or protected by a skull 

whose anatomy is more similar to humans [130,131]. Additional 

parameters to carefully consider in modeling CTE is the spacing of rTBI 

injuries, the age of the rodent during rmTBI, and the endpoint(s) at which 

pathology is assessed [102,122,132,133]. To better replicate the human 

timeline of rTBI, injuries should be spaced over a long period of time 

during adolescence to young adulthood, and chronic endpoints should be 

used for evaluation of CTE pathology. Currently, most models of rmTBI 

and CTE utilize short spacing of injuries and endpoints in rodents are 

typically chosen at 1-1.5 years of age, which only equates to mid-life in 

humans [134]. Overall, while preclinical studies of CTE represent one of 

the most favorable methods by which to investigate the 

pathophysiological link between rmTBI and CTE, there are key avenues 

to be addressed to enhance the translational capacity of preclinical models 

and enhance the investigation of causative mechanisms of CTE.

 

Study Animal rTBI model Injury Paradigm Age Tau Detection Endpoint(s) Findings 

Tadepalli et 

al. 2020 

[135]  

Wild-type 

(WT) male rats 

Mild weight 

drop (mWD) 

Single mild 

(mTBI), re- 

petitive mild 

(rmTBI – 5 hits, 

24 h apart), rapid 

repetitive mild 

(rapTBI – 5 hits, 5 

min apart) or a 

single severe 

(sTBI) TBI 

8-10 months Enzyme-linked 

immunosorbent 

assay (ELISA) 

8 weeks post-

injury (PI) 

No differences in 

phosphorylated tau 

(pTau); rmTBI 

group decreased 

performance in 

Novel Object 

Recognition 

(NOR) test 

Cheng et al. 

2020 [136]  

Tau-

overexpressing 

male mice 

(Tau58.4) 

rmTBI via 

closed head 

impact (CHI) 

42 impact (6 

impacts/day for 7 

days) 

3-4 months Immunohistochemis

try (IHC) 

1 month PI No differences in 

pTau, oligomeric 

Tau; rmTBI Tau-

overexpressing 

mice had enhanced 

gliosis and 

peripheral immune 

cell infiltration 
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Bachstetter 

et al. 2020 

[137]  

WT or rTg4510 

tauopathy male 

mice 

CHI Single or 2nd CHI 

exposured 1 day 

or 7 days PI 

4 months 

(WT), 2 

months 

(rTg4510) 

ELISA, Western 

Blot (WB) 

7 days PI 

(WT), 13 days 

PI (rTg4510) 

Increased pTau and 

total Tau in 2 hit 

WT CHI mice; 

increased 

pS396/S404 

positive tau in 1 

and 2 hit rTg4510 

CHI mice, no 

difference in total 

tau 

Niziolek et 

al. 2020 

[138]  

Male mice with 

or without 

either i. 

pharmacologic

al depletion of 

acid 

sphingomyelin

ase (Asm) or ii. 

genetic ablation 

of Asm (Asm-/-) 

Moderate WD Single 8-10 weeks IHC 1 day or 30 

days PI 

TBI increased 

hippocampal pTau 

at 30 days PI and 

this accumulation 

is partially 

prevented by Asm 

inhibition 

Tang et al. 

2020 [139]  

WT or 

transgenic Tau 

male mice 

(P301S) with or 

without Fyn 

kinase 

inhibition 

CHI with or 

without 

chronic 

variable stress 

(CVS) 

14 hit (1 per day) 

over alternating 

hemisphere 

2 months IHC 5.5 months PI Injury increased 

pTau but not total 

tau; Fyn inhibition 

rescued pTau 

levels to Sham 

Angoa-

Perez et al. 

2020 [140]  

WT male mice WD Exposed to a total 

of 20 head 

impacts (1 per day 

for 5 days 

[Monday-Friday 

with weekends 

off]) 

8 weeks IHC 0, 45, or 90 

days PI 

Increased pTau at 

90 days PI 

Bugay et al. 

2020 [141]  

WT male mice Blast 3 exposures, 1 per 

day over 3 

consecutive days 

10 weeks WB 7 days PI Increased tau and 

pTau in rmTBI 

group 

Ojo et al. 

2020 & 

Eisenbaum 

et al. 

[142,143]. 

hTau mice CHI 2 injuries/week 

for 3 months 

3 months Ex vivo tau uptake 

by cerebrovascular 

cells 

3, 6, or 12 

months PI 

Decreased tau 

uptake in rmTBI 

mice 

Garcia et al. 

2021144 

Male rats Blast 3 exposures, 

1/day for 3 

consecutive days 

10 weeks WB 10 days PI Elevated pTau in 

blast animals and 

correlating 

neurobehavioral 

deficits 

Dickstein et 

al. 2021 

[112] 

Male rats Blast 3 exposures, 

1/day for 3 

consecutive days 

10 weeks WB, IHC 6 weeks or 10 

months PI 

Elevated pTau at 

both endpoints in 

certain brain 

regions; no 

changes to total tau 

Morin et al. 

2021 [145]  

hTau mice CHI Either i. 5 hit 

rmTBI (5 injuries 

over 9 days with a 

48-hr interval) or 

ii. chronic rmTBI 

(24 injuries, 2 per 

week, with a 3-4 

day interval) with 

or without 3 

month delayed 

12-14 weeks IHC 6 months PI Increased pTau in 

both rmTBI 

models; anatabine 

decreased pTau to 

sham levels 
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anatabine 

treatment for 3 

months 

Xu et al. 

2021 [146] 

WT male mice Closed skull 

controlled 

cortical 

impact (CCI) 

5 impacts, 1/day 

for 5 consecutive 

days 

8-10 weeks IHC 1, 4, and 10 

weeks PI 

Increased pTau at 4 

and 10 weeks PI in 

rmTBI mice 

Hiskens et 

al. 2021 

[147]  

WT male mice WD i) a single impact 

(1-IMP); ii) five 

total impacts (5-

IMP); iii) 15 total 

impacts (15-IMP) 

- ELISA 2 days or 3 

months PI 

No differences in 

pTau or tau 

pathology 

Kahriman 

et al. 2021 

[148]  

WT male mice CHI 5 hits, 1/day for 5 

consecutive days 

8-12 weeks IHC 1, 4, or 24 

weeks PI 

Increased pTau-

immunoreactive 

astrocytes and 

neurons and 

cortical pTau at 4 

weeks and 24 

weeks PI 

Kahriman 

et al. 2022 

[149]  

WT male mice WD 

 

 

5 hits, 1/day for 5 

consecutive days 

9-12 weeks IHC 28 days PI Increased tau 

pathology in rTBI 

mice 

Wu et al. 

2022 [150] 

WT and 

Interleukin 1 

Receptor 1 

kockout 

(IL1R1-/-) mice 

CHI 3 hit, 1 per 

consecutive day 

over alternating 

hemisphere 

beginning with 

right 

38 days WB, IHC ~13 months PI Increased tau 

hyperphosphorylati

on and aggregation 

in male neurons but 

not female 

neurons; no 

differences in total 

tau 

Yoon et al. 

2022 [151]  

WT male mice WD 5 hits, 1 

administered 

every 3 days 

- IHC 3 days PI Increased pTau in 

the olfactory bulb 

Juan et al. 

2022 [152]  

WT mice CHI Single or 5 hits 

administered 

every 48 hours 

12 weeks WB, IHC 1 month PI No tau pathology 

differences, but tau 

regulatory proteins 

significantly 

altered in rmTBI 

mice 

Morin et al. 

2022 [153]  

hTau mice CHI 5 consecutive 

mTBI over 9 days 

(48 h interval 

between the 

injuries) 

3 months Mass spectrometry 

of isolated cortical 

proteins and 

phosphoproteins 

3 or 24 weeks 

PI 

Increased tau 

associated protein 

in rmTBI group 

along with 

alterations to 

phosphoproteins; 

same model 

previously 

demonstrated 

increased tau 

pathology up to 2 

years PI 

Table 1: Literature on CTE preclinical rodent models. Search terms for table: (chronic traumatic encephalopathy) AND model* OR (repetitive 

traumatic brain injury) AND tau on Pubmed.gov; refined by years 2020-2022 with focus on tau pathological assessment 

Conclusion:  

Alzheimer’s disease and CTE both have strong connections with 

neurotrauma. Emerging data has looked at preceding inflammatory 

cascades that contribute to disease progression. In this review, we 

highlighted the novel clinical trials, innovative pre-clinical studies, and 

shared mechanisms between the disease states. This review offers a 

concise resource for clinicians and research personnel. 
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