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Abstract 

Energy metabolic reprogramming has recently been recognized as an important hallmark of tumor metabolic biology, and 

tumor cells can be manipulated to obtain rapid growth, immune evasion and apoptosis, which play an important role in 

tumor development. Enhanced glycolysis is the main source of energy required for tumorigenesis, development and 

metastasis in the tumor microenvironment, and Warburg suggested that tumor cells preferentially choose glycolysis as the 

main pathway to provide energy even under aerobic conditions, but the mechanisms and causes of this metabolic alteration 

remain unclear. PFKFB3 is an important activator of glycolysis and plays an important role in carcinogenesis, including 

Tumor cytogenesis, metastasis, drug resistance and alteration of the tumor microenvironment. In this review, we 

summarize the role of PFKFB3 in different tumor types and its effects on the tumor microenvironment, as well as the 

signaling pathways through which PFKFB3 acts in tumors, suggesting PFKFB3 as a potential anti-tumor therapeutic 

target. 
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Introduction 

The "Warburg effect", first proposed by the German scientist Otto 

Warburg in the early 1920s [1,2], It is that tumor cells preferentially 

choose glycolysis as the main metabolic pathway to provide energy even 

under adequate oxygen conditions. The level of glycolytic flux is 

regulated by different mechanisms, including three key enzymes, namely 

hexokinase, phosphofructokinase-1 (PFK-1) and pyruvate kinase [3]. One 

of the key steps is the conversion of fructose-6-phosphate (F6P) to 

fructose-1,6-phosphate(F1,6P2). 6-phosphofructo-1-kinase, for which F-

1,6-BP, ADP, and AMP are metabolic activators. Its activity is regulated 

by adenosine triphosphate (ATP), adenosine diphosphate (ADP), and 

fructose-2,6-phosphate (F-2,6-BP) [4]. The level of Fru-2,6-P2 in tumor 

cell glycolysis is mainly regulated by PFKFB3, a hallmark of malignancy 

that is susceptible to regulation by isoforms characterized by high 

kinase/phosphatase ratios. The PFKFB3 gene has the highest 

kinase/phosphatase activity in the PFKFB gene family and is used to 

maintain high glycolytic efficiency [5,6]. (Figure 1)  
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Figure1: The role of PFKFB3 in glycolysis is illustrated by the regulation of PFK-1: PFKFB3 promotes glycolysis by activating F-2,6-BP. 

The PFKFB gene consists of four different isozymes (PFKFB1-4) [7], 

which are highly homologous, among which the PFKFB3 gene is located 

on the short arm of chromosome 10p14-15 [8] and was first isolated in 

the bovine brain library [9], in which the pfkfb3 gene consists of 19 exons 

including 7 variable regions and 12 constant regions The 

kinase/bisphosphatase activity is 700-fold higher than that of the isozyme 

and facilitates the synthesis of Fru-2,6-P2 [10,11]. This PFKFB3 protein 

has two distinct functional domains: the C-terminal domain of the 

diphosphatase activity of the enzyme, which degrades F2,6P2 to F6P and 

inorganic phosphate (Pi), and this structural domain can be selectively 

spliced to produce six isoforms from UBI2K1 to UBI2K6. the N-terminal 

domain is responsible for the synthesis of F2,6P2 from F6P and ATP. the 

PFK-2/FBPase2 bifunctional enzyme is the gene product enzyme of 

PFKFB3 and is regulated by covalent modifications. the C-terminal 

structural domain can be phosphorylated at Ser461 by different protein 

kinases [12]. (Figure2, Figure3) 

 
Figure2: PFKFB3 gene structure:The PFKFB3 gene contains 19 exons, which are divided into a constant region and a variable region. The 

variable region contains seven exons from A-G. 
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Figure 3: PFKFB3 protein structure: The PFKFB3 protein has two homodimeric subunits, each containing an N-terminal kinase domain and a C-

terminal phosphatase domain. the N-terminal catalyzes the production of F2,6P2 and ADP from F6P and ATP, which highly promotes the glycolytic 

pathway. the C-terminal dephosphorylates F2,6P2 to produce F6P and Pi. 

Roles of PFKFB3 in tumor microenvironment 

1.Targeting PFKFB3 in immune cells 

Warburg effect is associated with the regulation of immune cell 

metabolism, and both immune cells and tumor cells are considered as 

highly motile cells that preferentially select glycolysis for energy supply, 

and by exploiting the possibility of regulating the metabolism of cancer 

cells and antitumor immune cells by metabolic differences between 

different cells, glycolysis can be used as a metabolic checkpoint for cancer 

immunotherapy. Chen [13] et al. found that monocytes in the tumor 

microenvironment significantly increased the glycolytic flux of cells in 

the paracancerous region of HCC (hepatocellular carcinoma). The 

activation of glycolysis induced PD-L1 expression on cells in the 

peritumoral region of HCC, thereby attenuating cytotoxic T lymphocyte 

infiltration. The key glycolytic enzyme PFKFB3 can be upregulated by 

soluble factors such as hyaluronic acid. PFKFB3 not only acts as a cellular 

glycolytic switch, but also mediates increased PD-L1 expression through 

activation of the nuclear factor kappa B signaling pathway. 

PFKFB3/CD68 infiltration in hepatocellular carcinoma paraneoplastic 

tissues was negatively correlated with overall survival of HCC patients 

and was an independent prognostic factor for survival of HCC patients. 

The role of PFKFB3 in T lymphocyte-mediated immune-related 

antitumor immunotherapy is still poorly investigated. Zhang [14-16] et al. 

found that PFKFB3 inhibitor PFK-158 increased infiltrating CD8+ and 

CD4+ T cells and decreased infiltrating Th17 cells in melanoma mice. 

Glycolytic reprogramming is associated with immune activation 

responses and immune tolerance in the tumor environment and is a 

potential target for future immune-based anticancer therapies. 

2. PFKFB3 and ECs 

Tumors are rich in blood vessels with irregular morphology, which 

provide nutrition for tumor development and metastasis and are 

associated with poor prognosis, and pathological angiogenesis is one of 

the characteristic hallmarks of tumors [17,18]. Under conditions such as 

hypoxia, vascular endothelial growth factor (VEGF) in vascular 

endothelial cells can stimulate neovascularization by regulating PFKFB3 

expression [19,20], and regulate directed migration of vascular 

endothelial cells to promote neovascularization and endothelial 

migration. [21].  

In contrast to conventional anti-angiogenic therapies aimed at reducing 

angiogenesis, it is the normalization of the characteristically disorganized 

tumor vascular system to improve blood perfusion, which may reduce 

hypoxia and increase drug accessibility. Normalized blood vessels may 

also resist the shedding of cancer cells in the primary tumor, which may 

reduce tumor metastasis. A recent study found that inhibition of PFKFB3 

in melanoma tumor vascular endothelial cells (TEC) induced 

normalization of tumor blood vessels, thereby reducing tumor angiogenic 

activity and contributing to increased sensitivity to antitumor drugs. 

Improving vascular permeability by reducing VE-calmodulin endocytosis 

thereby reducing angiogenic activity [22,23]. By reducing NF-κB 

signaling, TECs also decrease the expression of cancer cell adhesion 

molecules and inhibit metastasis of cancer cells [24]. Therefore, targeting 

EC metabolism by PFKFB3 may provide novel therapeutic perspectives 

for anti-angiogenic therapy and inhibition of tumor growth. 

3. PFKFB3 and autophagy 

In 1963 Christian de Duve elucidated the mechanism of the process from 

yeast to cultured cell lines into mice, 

The concept of autophagy was first proposed [25], which consists of five 

distinct phases: initiation, vesicle nucleation, vesicle elongation, vesicle 

fusion and material degradation, regulated by ancient and highly 

conserved genes that act during stresses such as oxidative stress, hypoxia 

and nutrient deprivation [26,27]. Autophagy is an organelle-dependent 

process that transports substances to lysosomes for degradation, ensures 

the cell cycle and provides energy to the cell. Autophagy presents a 

double-edged role in tumors depending on the tumor microenvironment: 

it can be both a tumor suppressor mechanism and a promoter of tumor 

cell survival. For example, in renal cell carcinomas, PFKFB3 

accumulation in the cytoplasm promotes ATP production and thus 

inhibits autophagy in renal cell carcinoma (RCC) cells, whereas nuclear 

localization of PFKFB3 is associated with enhanced autophagy in tumor 

cells [28]. Self-renewal of breast cancer stem cells is an important process 

in the resurrection of breast cancer after metastatic dormancy, PFKFB3 

plays an important conditional role in breast cancer metastatic recurrence, 

Alyssa La Belle Flynn observed an inverse relationship between PFKFB3 

expression and autophagy, disruption of autophagy timing drives 

PFKFB3 to be able to drive dormant BCSC and metastatic lesion 

recurrence The phenotypic shift from a metastatic dormant state to tumor 

recurrence from high PFKFB3low autophagy to low PFKFB3 high 
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autophagy was observed, and the detection of PFKFB3 and autophagy 

expression status could predict tumor recurrence and the response status 

of tumor patients to treatment[29]. 

4. PFKFB3 and Tumor drug resistance 

The mortality rate of hepatocellular carcinoma is extremely high 

worldwide, largely due to the lack of effective and durable therapeutic 

measures. [30] Sorafenib is the first generation of targeted therapy for 

hepatocellular carcinoma and is considered to be of benefit to patients, 

however, because of the early onset of sorafenib resistance, most patients 

do not receive a long-term benefit. Li et al. showed that aspirin combined 

with sorafenib could induce death of sorafenib-resistant cancer cells 

without associated hepatotoxicity and inflammatory responses by 

inhibiting PFKFB3 to reduce glycolytic flux to make mitochondrial 

permeability, and by making metabolites such as lactate decrease to 

activate associated apoptotic signals. It is shown that PFKFB3 

overexpression dominates the resistance process of sorafenib in 

hepatocellular carcinoma and can be controlled by inhibiting PFKFB3 

expression through aspirin as a target. In hepatocellular carcinoma 

sorafenib enhances glucose uptake and lactate export in hepatocellular 

carcinoma cells [31]. It has been shown that glycolysis inhibitors such as 

inhibition of PFKFB3 can greatly inhibit the growth of sorafenib-resistant 

cells to increase glycolytic flux and enhance glycolysis [32,33]. Silencing 

of PFKFB3 enzyme has a synergistic effect with sorafenib [34,35,36]. 

Inhibition of glycolysis by specific molecules or targeting key enzymes 

of glycolysis is an effective strategy to attenuate sorafenib resistance. 

Cisplatin is the first widely used chemotherapeutic agent in solid tumors 

such as head and neck tumors, lung cancer, bladder and reproductive 

tumors, where the mechanism of action is mainly to induce DNA damage 

in tumor cells leading to cell cycle arrest and induction of apoptosis. 

Demonstrated that PFKFB3 has a key role in protecting tumor cells from 

chemotherapeutic drug-induced apoptosis. Cisplatin-induced DNA 

damage induces PFKFB3 acetylation at lysine 472 (K472), and 

acetylation at Lys472 of PFKFB3 protein contributes to the cytoplasmic 

accumulation of PFKFB3 by weakening the interaction between input 

protein α5 and PFKFB3. This increases the phosphorylation of PFKFB3 

at the Ser461 site. This is known to be associated with enhanced 

glycolytic activity. Cisplatin-induced DNA damage stimulates PFKFB3 

Lys472 acetylation in an ATM-dependent manner, promoting enhanced 

glycolysis and protecting cells from cisplatin-induced apoptosis. This is 

critical for the cellular response to DNA damage caused by 

chemotherapeutic agents. A novel mechanism for acetylation-mediated 

PFKFB3 accumulation in the cytoplasm regulating cisplatin antitumor 

was revealed, and a potential strategy for chemotherapy by targeting 

PFKFB3 was proposed[37]. 

5. regulation mechanism 

The mechanisms regulating PFKFB3 are different for different 

environments and different regulatory factors(Table1). For example, 

progesterone, stress stimulation or insulin trigger a dual mechanism to 

ensure that glycolysis increases phosphorylation and activation of 

PFKFB3 enzymes in acute environmental situations [38,39]. Activation 

of different kinases in hypoxic, ischemic or stressful microenvironments 

may be critical for cell survival and therefore represent a protective 

mechanism for cells in stressful states or hypoxic environments.HIF-1, 

AMPK and other kinases are components of a concerted cellular response 

to maintain energy homeostasis in hypoxic, stressful or ischemic 

microenvironments [39, 40,41].PFKFB3 is subject to Demethylation [42] 

or ROS-mediated S glutathionylation [43] is regulated in cancer cells, 

resulting in tumor cells primarily utilizing the pentose phosphate pathway 

for metabolism rather than the glycolytic pathway, which allows for ROS 

detoxification. p53 represses PFKFB3 gene expression to increase 

glucose passage through the pentose phosphate pathway to increase 

nucleotide production, thereby promoting nucleotide biosynthesis in 

response to DNA damage [44]. 

 

Table 1 

The oncogenic Ras signaling pathway is a central regulator of glucose 

metabolism for cancer and can regulate PFKFB3 activity. Ras in 

glioblastoma inhibits glycolysis by reducing pfkfb3 gene expression 

through inhibition of hypoxia-inducible factor 1 α (HIF-1α) [39]. [45] 

Constitutive HER2 expression increases PFKFB3 expression and glucose 

metabolism in breast cancer cells. Hypoxia, progesterone, and estradiol 

can induce PFKFB3 expression through the interaction of HIF-1, 

progesterone receptor (PR), and estrogen receptor (ER) with their shared 

response elements located in the pfkfb3 promoter. It was shown that the 

circadian rhythm-driven transcription factor 'CLOCK' can bind to the 

pfkfb3 promoter at the 'E-box' locus to increase pfkfb3 transcription in 

cancer cells, PFKFB3 inhibition significantly delays the growth of 

implanted human tongue cancer cells in mice only at certain time points 

within the circadian cycle [46]. This finding suggests the importance of 

time-based PFKFB3 inhibition in cancer therapy. The major signaling 

pathways involved in PFKFB3 regulation were shown to be in (Figure4) 
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Figure4: Numerous signaling pathways that regulate PFKFB3. [1] Progesterone, estradiol and hypoxia induce the transcription factors PR, ER and 

HIF to bind to their response elements at the PFKFB3 promoter, respectively. [2] Stimuli such as stress increase PFKFB3 production through the 

P38/MK3 pathway. eGF acts through the ERK1/2 (extracellular signal-regulated kinase)/RSK1-4 (ribosomal S6 kinase) pathway, and [3] the TGF-

β/Smad pathway regulates PFKFB3 expression 

6. PFKFB3 role in tumor proliferation and invasion 

Atsumi et al. showed that PFKFB3 mRNA G1/S cell cycle phase was 

induced to promote tumor cell proliferation [47]. In line with these 

findings, Calvo et al. found a significant decrease in tumor growth rate by 

silencing PFKFB3siRNA in HeLa adenocarcinoma cervical cancer cells 

[48]. Furthermore, Yalcin et al. showed that PFKFB3 knockdown induced 

cell cycle arrest at G1/S in HeLa cells [49]. The pro-proliferative role of 

PFKFB3 in the tumor cell cycle was confirmed. 

 PFKFB3 expression was also negatively correlated with many proteins 

involved in epithelial-mesenchymal transition (EMT). Gu M et al. showed 

that knockdown of PFKFB3 in nasopharyngeal carcinoma cells revealed 

up-regulated expression of E-cadherin and down-regulation of Vimentin 

and N-cadherin levels [50]. In addition, it has been shown that PFKFB3 

siRNA transfection reduced Snail expression while upregulating E-

cadherin levels in pancreatic cancer cells [51]. Our previous study showed 

that PFKFB3 upregulated expression in gastric cancer cells correlated 

with gastric cancer EMT. aberrant PFKFB3 expression and tumor 

invasion and metastasis. 

Prospects of PFKFB3 inhibitor in cancer treatment 

With the accumulation of knowledge about the role of PFKFB3 in tumor 

metabolic reprogramming, there has been a strong interest in PFKFB3 

inhibitors in antitumor therapy(Table2). To date, [52,53] the best-known 

PFKFB3 inhibitor is 3PO, a 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-

one, also known as 3PO, synthesized by Clem et al. 3PO inhibits a variety 

of tumor cells by inhibiting recombinant PFKFB3, decreasing 3PO 

inhibits a variety of tumor cells by inhibiting recombinant PFKFB3, 

reducing glucose uptake and decreasing cytoplasmic levels of Fru-2,6-P 

and ATP, thereby attenuating tumor cell activity. PFKFB3 expression was 

increased in HER2-positive breast cancer, and PFKFB3 expression was 

associated with poorer progression-free and metastasis-free survival in 

breast cancer patients [45].PFK15 showed greater inhibitory activity 

against PFKFB3, rapidly induced apoptosis in transformed cells, 

displayed adequate pharmacokinetic properties, inhibited glucose uptake 

and 20 Promoted Lewis in syngeneic mice lung cancer growth in 

syngeneic mice and exerted antitumor effects in thymus-free mice against 

three human cancer xenograft models [54]. 
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Table 2 

PFK15 is the only PFKFB3 inhibitor used in phase I clinical trials, and a 

phase I clinical trial of PFK158 in patients with advanced solid 

malignancies was completed in 2016, confirming the efficacy of PFK158 

in a variety of advanced solid malignancies. PFK158 has been shown to 

be safe and protective in a variety of advanced solid tumors, 

demonstrating its important clinical utility as monotherapy or in 

combination with other targeted agents (clinicaltrials.gov 

#NCT02044861) [55,56,57]. 

Conclusions 

In this review, we summarize the current knowledge on the role of 

PFKFB3 in tumor cell metabolism and the mechanisms of PFKFB3 

action. The intriguing links between PFKFB3 and tumors, and between 

ECs and immune cells, suggest that PFKFB3 is a potential target for 

tumor therapy. However, to date, no PFKFB3 inhibitors have been 

approved for the treatment of cancer patients. 3PO is a potent inhibitor of 

PFKFB3, but poor water solubility makes this compound clinically 

unusable, and the recent emergence of nanotechnology-based drug 

delivery vehicles has the ability to formulate a variety of hydrophobic 

anticancer agents, including 3PO, thus showing potential to enhance 

anticancer effects when used in vivo. PFKFB3 represents a promising 

target for tumor therapy. However, to date, no PFKFB3 inhibitors have 

been approved for the treatment of cancer patients. 3PO is a potent 

inhibitor of PFKFB3, but poor water solubility has prevented the clinical 

use of this compound. Other potent and selective PFKFB3 inhibitors, such 

as PFK15 and PFK-158, are in clinical trials in patients with advanced 

tumors. Nanotechnology-based drug delivery vehicleswere formulated 

into various hydrophobic anticancer agents, including 3PO, thus showing 

potential to enhance anticancer effects when used in vivo.The relationship 

between PFKFB3 as a metabolic regulatory switch and tumor immunity 

suggests that targeting tumor metabolism and targeting immunity to treat 

tumors provides new insights. 
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