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Abstract 

Brain water metabolism is involved in realization of a broad spectrum of vitally important physiological functions of 

the brain.  Its disorders in various pathologies often lead to serious complications and death. Finding ways of 

pharmacological control of brain water metabolism is important to therapy of many conditions in neurology and 

neurosurgery.  At present, there are the two mutually excluding basic views on brain water metabolism making it a 

center of theoretical controversy. A conventional approach affirms that the brain nanodimentional extracellular space 

presents a diffusion barrier to water movement. An interdisciplinary approach suggests that a slip-flow mechanism 

governs water movement there in the extracellular space that presents an integral part of the brain nanofluidic domain. 

This review centers on the nanofluidic mechanism of brain water metabolism and the AQP4-targeted drug control of 

brain water metabolism.  The information presented here might be used in a neurobiological research, development of 

the AQP4-targeted drug therapy, optimization of intrathecal drug delivery, in a research on the therapy of the brain 

water metabolism disorders. 

Keywords: brain water metabolism; diffusion barrier theory; nanofluidic mechanism of brain water metabolism; 

AQP4-targeted drug therapy.  

Abbreviations: ISS – the interstitial space; ISF –the interstitial fluid; 

BBB - the blood-brain barrier; AQP1- aquaporin-1; AQP4- aquaporin-4. 

Introduction: 

The red arrow indicates the direction of the blood flow in the capillary. 

The dotted blue line with AQP4 present this aquaporin in the astrocyte 

endfeet membrane enveloping the capillary. The functionally different 

parts of the capillary are designated as FS (the Filtration Section), OS (the  

Oscillatory Section), and RS (the Reabsorption Section). The blue arrows, 

with the rate symbols “Jv”, “±Jv”, and –Jv”, indicate the direction of the 

water flows in the respective sections. The oncotic pressure in the 

capillary and the interstitial fluid is πC and πISF, respectively. Hydrostatic 

pressure is pa at the arterial end of the capillary and pv at the venule end. 

The intracranial pulsatory pressure is f(t). The square brackets indicate the 

nanofluidic domain.  Note that the schematic is not drawn to scale and 

does not represent the true ratio between capillary diameter and the 

capillary length [8] . 
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Figure 1: Nanofluidic mechanism of brain water metabolism 

This interdisciplinary approach opens new fascinating perspectives in 

elucidating the so far concealed features of the brain water metabolism 

with important physiological implications.  

Having adopted the nanofluidic approach and employed computer 

simulation technique, we have studded, in some detail, the brain water 

metabolism and related issues  [8],[9],[10],  [11],[12],[13],[14],[15]. 

The nanofluidic model of brain water metabolism is built on the following 

assumptions:  

the brain nondimensional extracellular space presents a nanofluidic 

domain where  water movement there governed by the slip-flow 

mechanism; aquaporin AQP4 ensures kinetic control over water 

movement between the blood and the brain extracellular space;the overall 

fluid transfer between the capillary blood and the interstitial fluid is 

isosmotic;the pulsatory intracranial pressure presents a driving force 

behind the isosmotic fluid exchange between the capillaries and the 

interstitial space [8]. 

A study of brain water metabolism, using a new approach, makes it 

possible to observe its many features relevant to brain physiology and 

pathological situations. It has been demonstrated the way AQP4 

polarization in the astrocyte endfeet membrane affects the radial water 

fluxes.  The model made it possible to assess quantitatively the influence 

of elevated intracranial hydrostatic pressure and elevated venous 

hydrostatic pressure on the transcapillary water exchange. An interesting 

feature of the model is that it makes possible to study mass-transfer events 

in the brain tissue. Thus it has been employed to study tissue oxygenation, 

transfer of carbon dioxide and glucose. The model might be used to study 

the effects of pharmacological modulators of AQP4 activity (the BBB 

permeability). The model demonstrates an intimate connection between 

brain water metabolisms and heart activity.  

Brain edema brings about an increased intracranial pressure, effects 

cerebral circulation, causes brain hypoxia and a number of 

pathophysiological changes leading to severe neurological disorders and 

death. Cerebral edema occurs in a wide range of pathologies like 

traumatic brain injury, the stroke, hemorrhages, hydrocephalus, brain 

tumors,   etc.   The brain edema may also arise from the causes originated 

outside the brain: postoperative trauma, hemodynamic and hormonal-

electrolyte disorders; cardiac, hepatic, renal, respiratory insufficiency; 

decompensated endocrine pathology, etc. Clinical practice demonstrates 

that there are still remain unresolved problems  about  the correction of 

the water metabolism disorders [16] , [17]. There are also remain some 

controversies abbot understanding, at the basic level, the mechanism of 

the brain water metabolism `  

This metabolism has been a subject of close attention of researchers and 

of hot debates. To date, there is remain controversy about the issue.  It 

stands in the way of the development of the effective means of the 

treatment of the brain water metabolism disorders.  

The role of the choroidal plexus in the brain water metabolism  has been 

scrutinized and subjected to criticism as untenable in the light of the latest 

basic and clinical research evidence [18] [19]. Acceding to an alternative 

theory, the main participants in the cerebral water exchange are the 

capillaries of the whole brain parenchyma, and not the choroidal plexus 

[20].  

Water metabolism is associated with the activity of the quantitatively 

predominant and functionally most important aquaporin AQP4. This 

aquaporin is expressed in large quantities, as the two-dimensional 

orthogonal structures, in the plasma membrane of the astrocyte endfeet 

enveloping the capillaries  [21], [22]. AQP4 controls the transfer of water 

across the BBB. Controlling the water movement between the blood and 

the interstitial space, it plays an important role in brain physiology, as well 

as in the development of pathological reactions leading to  edema [23] 

[24]. 

AQP4 is viewed a molecular target for drug action directed at correction 

the disorders of brain water metabolism.  Figure 2 demonstrates the results 

of AQP4 inhibition on water flow into brain parenchyma. 
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Figure 2. Aquaporin AQP4 inhibition and water transfer across the BBB into brain parenchyma. 

A. No AQP4 inhibition. B. 50% inhibition of AQP4 activity C.  75% inhibition of  AQP4 activity   

1. The total racial water volume transferred over a cardiac cycle. 2. The racial water volume transferred over the systolic phase of the cardiac 

cycle. 3. The racial water volume transferred over the diastolic phase of the cardiac cycle.  

New knowledge makes it possible to outline promising approaches in the 

treatment of the brain water metabolism disorders [3], [9],[12],[25]. The 

pharmacological arsenal of medicines currently used to correct disorders 

of cerebral water metabolism and combat brain edema represents a 

complex, which includes means of osmotherapy (mannitol, hypertonic 

sodium chloride solution), diuretics (furosemide, bumetanide) and other 

drugs with different mechanisms of action (corticosteroids, testosterone, 

dexamethasone, propofol, piroxicam, acetazolamide, etc.). 

The osmotherapy is used to provide an osmotic pressure gradient between 

blood and the brain fluids and to ensure directed water flow from the brain 

tissues into the systemic circulation. Diuretics serve the same purpose.  

The success of osmotherapy depends on water permeability of the BBB 

controlled by AQP4. Numerous studies have shown that the level of 

expression and the degree of polarization of AQP4 in the BBB structures 

are labile and depend on many physiological factors. Significant changes 

in the activity of AQP4 are observed in pathologies  [26].  

The concept according to which aquaporins present molecular  targets for 

drugs is very attractive and practically important [27], [28], [29], [30] . In 

view of this, much research has been carried out to study the action of 

drugs on aquaporin activity.  

The Table shows the effects of some drugs, used in the treatment brain 

edema and water metabolism disorders, on the activity of aquaporins 

AQP1 and AQP4. 

Pharmacological preparation Effect on AQP1 Effect on AQP4 References  

Testosterone Increases the level of 

expression 

Increases the level of expression [31] 

Propofol Vector inhibitor Lowers the level of expression [32] [33] 

[34] 

Dexamethasone Increases the level of 

expression 

The expression level is different in 

different parts of the GM 

 [35]  

Piroxicam - Inhibitor [36] 

Acetazolamide (diacarb) Inhibitor Inhibitor [37], [38] 

Bumetanide Inhibitor Inhibitor [39] 

AqB013, a derivative of bumetanide Inhibitor Inhibitor [40] 

Furosemide (lasix, furon) Inhibitor Inhibitor upon penetration into the 

cell 

[41] 

Corticosteroids Increase the expression of 

AQP1 in capillaries 

- [42] 

Table.  Pharmacological modulators of AQP1 and AQP4 activity 

Chemical modulators of aquaporins penetrating into the cell produce 

either an inhibitory or an activating effect on a specific aquaporin. The 

same aquaporin in different tissues may be involved in implementation of 

different physiological functions and thus be involved in the appearance 

of different responses at the organ level. For example, inhibition of AQP1 

in the collecting tubes of the kidney results in increased diuresis. On the 

other hand, AQP1 inhibitors have no effect on water permeability of the 

BBB. This asks for comprehensive information about drug action on the 

activity of a respective aquaporin and careful evaluations of their 

pharmacological effects.  

There is always a problem to solve concerning a pharmacological 

modulator reaching its target molecule to produce therapeutic effect. One 

of the approaches to solve this problem is development of prodrugs. Thus, 

for this purpose, a prodrug, an acetoxy-methyl derivative of furosemide, 
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has been synthesized that, in the process of bioconversion inside the cell, 

releases furosemide, an AQP4 antagonist. A similar approach has been 

used to increase permeability of bumetanide [43]. 

From the nanofluidic mechanism of the brain water metabolism, there 

follow some practical recommendations for the treatment of brain edema 

as far as the BBB water permeability is concerned.  In particular, it is 

important to employ a pharmacological control of    AQP4 activity in 

respect to the phases of brain edema. At the early stages, it is reasonable 

to inhibit AQP4 activity to reduce water flow into the brain and thus 

preventing further development of edema. The same tactics might be 

employed for premedication to prevent formation of brain edema, in view 

of upcoming operation on the brain, etc. 

However, in fully developed edema, when there is a problem of removing 

fluid excess from the brain tissues, the use of AQP4 inhibitors should be 

avoided. By preventing water outflow, pharmacological inhibitors will 

negatively affect the effectiveness of osmotherapy, contribute to 

persistence of edema and negatively reflect upon neurological status of 

the patient.  

Conclusion: 

At present, brain water metabolism has become a center of theoretical 

controversy.  There are two mutually excluding basic views on the events 

underlying the workings of brain water metabolism. According to a 

conventional approach, brain nanodimentional extracellular space 

presents a diffusion barrier to water movement. Contrary to this theory, 

an interdisciplinary approach suggests water movement there as a slip-

flow process that would result in appearance of water fluxes in the 

extracellular space. The central argument to support the latter theory is 

that the extracellular space is an integral part of the brain nanofluidic 

domain. 

The concept of diffusion barrier is incompatible with that of the 

nanofluidic mechanism of brain water metabolism.   The BBB separates 

the two water moieties:  that of the blood, governed by convection, and 

that of the water in the nanodimentional extracellular space, governed by 

diffusion, according to the diffusion barrier theory. Introducing diffusion 

is tantamount to making kinetically redundant AQP that otherwise 

controls water transfer over the BBB. This will be the case because case 

the limiting step would be shifted from AQP4 to the diffusion barrier of 

the extracellular space. The diffusion barrier theory makes invisible all 

those interesting findings in the mechanism of brain water metabolism 

revealed through the nanofluidic approach. 

It should be observed that nanofluidic mechanism of brain water 

metabolism, contrary to the diffusion barrier theory, opens wide 

possibilities for developing   the ways of pharmacological control of brain 

water metabolism. 
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