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Abstract 

Sulfoconjugation is the major pathway for thyroid hormone (TH) metabolism, converting T4 to inactive metabolites, 

T4S, rT3S, and T3S in fetus, via sulfotransferases (SULT) and type 3 deiodinase in gestation. Consistent with high 

production rate of T4S and rT3S, there are high serum sulfated iodothyronine analogs, including T4S, T3S, rT3S, and 

3,3’-T2S (T2S), in ovine and human fetal and preterm infants. Fetal TH metabolic pathways predict T2S as the major 

TH metabolite in the fetus.  Since maternal T2S appears to be quantitatively derived from fetal T3 (the active TH), 

the amount of T2S in the maternal compartment correlates with fetal thyroid function in sheep.  In humans, maternal 

serum contains high levels of radioimmunoassayable T2S; however, it displays as a peak adjacent to but unidentical 

to synthetic T2S on HLPC and we named it the W-Compound. Levels of W-Compound increase during pregnancy 

and peak as high as 20-fold to that of nonpregnant women.  Maternal serum levels of W-Compound significantly 

correlate with fetal T4 and W-compound concentrations but not maternal serum T4 in euthyroid or hyperthyroid 

women, showing a distinct difference between fetal and maternal in TH metabolism.  Fetal T2S is actively transferred 

to the mother via placenta and the quantity of T2S or its metabolite (W-Compound) in maternal compartment reflects 

fetal thyroid function.  Thus, maternal serum W-Compound may be a biomarker for monitoring fetal thyroid function 

in utero, although more investigations are needed to determine if it can be used as an alternative strategy for 

screening/managing congenital hypothyroidism due to dysregulated thyroid hormone metabolism. 
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Introduction:  

The current screening program for congenital hypothyroidism (CHT) has 

allowed early treatment of this disorder and clearly improving long term 

outcomes [1-4]. However, despite the systematic screening and treatment 

of CHT, mild brain damages do occur [5, 6]. Since thyroid hormone (TH) 

is involved early first trimester fetal brain development including the 

neuronal cells [7-9], it is expected that developmental neuronal defects 

cannot be totally reversed postnatally. In developing mammals including 

humans, a deficiency or excess of TH in the developing brain during the 

fetal and neonatal periods can lead to morphological and functional 

abnormalities.  Cretin is a serious form of congenital hypothyroidism 

(CHT), deficiency in TH in the newborn. These neonates suffer from not 

only impaired neurological function, but also stunted growth and physical 

deformities. This condition may occur in babies with a hypofunctioning 

thyroid gland. An estimated 15 to 20% of cases of CHT are inherited 

including gene mutations [1]. Many inherited cases are autosomal 

recessive but those with a mutation in the PAX8 gene or certain thyroid 

stimulating hormone receptor (TSHR) gene mutations have an autosomal 

dominant pattern of inheritance [3]. Other possible cause of fetal 

hypothyroidism is anti-thyroid medication treatment for maternal 

hyperthyroidism and lack of iodine during pregnancy. The incidence of 

babies born with CHT is 1 in 2,000 - 4,000 live birth in developed 

countries [3], representing a significant public health problem; this calls 

for more attention in better perinatal and neonatal care that needs new 

screening tools for fetal thyroid function and CHT. Our work in the 

sulfation pathway in mammalian fetal TH metabolism has obtained data 

that suggest the fetal-to-maternal transferred 3,3’-diiodothyronine sulfate 
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(T2S)-like metabolite (W-Compound) can be used as novel marker for 

fetal thyroid function (10-12). The measurement of this compound in 

maternal serum and urine may serve as new marker for fetal thyroid 

function during in utero development.   

Current neonatal screening of thyroid function and CHT 

Neonatal screening programs began detecting neonates with CHT over 45 

years ago. At present, 38 million births yearly worldwide undergo 

screening for this disorder [3]. The screening program for CHT has 

allowed early treatment of this disorder and clearly improving long term 

outcomes [2-4]. However, despite the systematic screening and treatment 

of CHT, mild brain damages do occur [5, 6]. Since thyroid hormone (TH) 

is involved early first trimester fetal brain development including the 

proliferation, migration, and differentiation of neuronal cells [7-9], it is 

expected that developmental neuronal defects cannot be totally reversed 

postnatally. These irreversible changes can impact on child IQ, cognitive 

and motor measures [2, 5, 13-16]. Children affected may present reduced 

socio-educational achievement [17, 18], greater risk of autistic trait [14], 

and more ADHD (attention-deficit/hyperactivity disorder) symptoms 

[19]. Recently, it has been found that higher preconception maternal 

iodine intakes are associated with higher child IQ [20], indicating 

intervention before or during pregnancy may help the future outcome of 

children.  

Unfortunately, the incidence of CHT in the United States showed a trend 

of increasing from ~ 1:4100 in 1987 to ~ 1:2400 in 2002 [21]. Similar 

increases (Table 1) were also observed in Australia [22], Italy [23], and 

Ireland [24]. Furthermore, some infants display a delayed thyroid 

stimulating hormone (TSH) rise that missed by neonatal screening [25]. 

Recent studies suggest that delayed TSH rise may be more common and 

more severe than previously recognized [26].  

Nations/Time 1980-1989 1990-1999 2000-2009 2010-2019 Note 

U.S.A. 0.24  0.42  Ref. 21 

(Western) Australia 0.17 0.35   Ref. 22 

Italy  0.33 0.51  Ref. 23 

Ireland 0.27 0.38 0.50  0.75     Ref. 24 

Table 1: Incidence of congenital hypothyroidism (Per 1000 Live Births) in developed countries. 

 

In addition, despite the U.S. being iodine sufficient for the general 

population, the U.S. dietary iodine intakes have decreased drastically 

since the 1970s, with deficiency reemerging in vulnerable groups such as 

women of reproductive age [26]. All these findings indicate that there is 

room for improvement in the current strategy with neonatal CHT 

screening. Further study of fetal thyroid hormone metabolism and 

function is warranted as these studies may provide alternative strategies 

for managing CHT to avert unwanted sequelae. 

What are the differences in thyroid hormone metabolism 
between fetus and adult?  

Our lab at University of California (Irvine) - Long Beach VA Medical 

Center, in collaboration with Professor D. A. Fisher at UCLA-Harbor 

General Medical Center, has found in mammalian fetuses that sulfo-

conjugation is the major pathway for TH metabolism (Figure. 1) [10, 27, 

28].  

Before the onset of active synthesis and release of TH, iodothyronines 

detected in the fetus clearly are maternal origin [15, 29]. This period is 

approximately the first 17 gestational days (d) in rats, 50d in sheep, and 

90d in humans (Table 2 and Figure. 1, the upper horizontal light dotted 

line). The proposed scheme for ovine fetal iodothyronine metabolism in 

late gestation (near term) depicts the production rates for sulfoconjugated 

TH analogs (shown as numbers in parentheses along the thick arrows in 

Figure. 1).  

    Sheep   Human  Rat 

Length of Gestation   150 d   280 d  21 d 

Species    precocial   precocial  altricial 

Thyroid Function at birth   mature 

(similar to humans) 

 mature  immature 

(2nd trimester to human)        

CNS Development at birth    mature  intermediate immature 

Placenta:      type:    epitheliochorial  haemomonochorial haemotrichorial 

                     origin:    maternal and fetal  fetal only  fetal only 

                     layers:     6   3  4 

Placental permeability to   less   ----  more 

TH (vs. human)   permeable     permeable 

Animal model to study 

placenta in late gestation 

  yes   ----  no 

Table 2: Comparison of sheep, rat and humans in the study of fetal-to -maternal transfer of iodothyronines in pregnancy. 
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Figure 1: Postulated metabolic pathways for ovine fetal thyroid hormones (10, 30).  Heavy solid lines indicate pathways that are more active in 

fetuses than in adults; thin solid lines, pathways that are less active in fetuses. The upper horizontal light dotted line depicts T4 of maternal origin 

moving to the fetal compartment in the first trimester, before the fetal thyroid begins functioning. The blue line indicates the transfer of fetal T3, 

through placenta D3 and ST to form T2S, into maternal compartment. Other broken lines represent unconfirmed pathways. Numbers in parentheses 

indicate published production rates (µg/kg/d). (D1, D2, and D3: type I, type II, and type III iodothyronine deiodinases; ST: iodothyronine 

sulfotransferases (SULT); LAO/AT: L-amino acid oxidase/aminotransferase; DiacS: sulfated 3,3’-diiodothyroacetic acid, TriacS sulfated 3,3’,5-

triiodothyroacetic acid). 

A kinetic study using the steady state constant infusion method in sheep 

showed that the major pathways of TH metabolism in the fetus convert T4 

to inactive metabolites, rT3, T4S, rT3S, and T3S, via sulfotransferase and 

D3 enzyme systems in late gestation [10, 27, 28].  The high production 

rate (µg/kg/d) of T4 sulfate (T4S) (Figure. 1) reflects the active activity of 

the sulfation pathway in the fetus [27,28]. The rT3S production rate likely 

represents both sulfation of rT3 and inner-ring deiodination of T4S.   

Consistent with the high production rate of T4S and rT3S, we have shown 

high serum concentrations of sulfated iodothyronine analogs in ovine and 

human fetal and preterm infant sera.  These include T4S, T3S, rT3S, and 

3,3’-T2S (T2S) [27, 28, 31-40].  Elevated iodothyronine sulfoconjugates 

are also detectable in amphibians during metamorphosis [41]. 

Thus, in developing mammals, sulfoconjugation of iodothyronine is an 

important pathway, in particular, during late gestation when the 

hypophyseal-pituitary-thyroid system becomes more mature in precocial 

species including sheep and humans.  As term approaches, fetal thyroid 

gland secretion increases progressively while the effects of TH in many 

peripheral tissues must be delayed to the postpartum period.  D3 and 

SULTs may serve to moderate the circulating THs before parturition. In 

addition, the shunting of iodothyronine metabolites of fetal origin into 

maternal circulation, the fetal to maternal transfer, is also an important 

mechanism in keeping an optimal active TH level in the developmental 

fetus.  

The most common maternal circulating iodothyronine 
metabolite of fetal origin (-- the fetal to maternal transfer). 

Thyroid hormone (TH) plays an important role in early fetal neurological 

maturation.  Iodothyronines detected in the fetus before the onset of fetal 

thyroid function is of maternal origin.  The maternal-fetal transfer of TH 

and their metabolites are apparently a two-way street. The high gradient 

between fetal and maternal serum concentrations of iodothyronine 

sulfates raises the possibility of significant fetal to maternal transfer of 

iodothyronine sulfoconjugates.  

Sack et al. [42] reported that umbilical cord cutting, thus removing the 

lamb from placental D3 and transfer, triggers hypertriiodothyroninemia 

in the newborn lamb and that the postnatal T3 peak can be delayed until 

well after the TSH peak by delaying umbilical cord cutting.  Santini et al. 

[43] reported that the placenta plays an important role in maintaining the 

low serum T3 in fetuses late in gestation.  These findings suggest an 

important role of the placenta in fetal T3 metabolism, (Fig. 1, the blue 

line); it is possible that fetal-to-maternal transfer of the sulfated 

iodothyronines (via placenta) is one mechanism responsible for reducing 

serum T3 concentrations in the fetus. Increasing fetal-to-maternal transfer 

of iodothyronines occurs in late gestation. 

The scheme shown in Fig. 1 also predicts 3,3’-T2S is the major thyroid 

hormone metabolite in the fetus. Intravenous infusion of radioiodine 

labeled T3 and T4 into near-term fetuses, demonstrated a rapid clearance 

of labeled T3 from fetal serum (disappearance T1/2 of 0.7 hours). Labeled 

T2S was identified as the major fetal iodothyronine metabolite in maternal 

urine [34]. Fetal T3 undergoes rapid inner-ring monodeiodination to 3,3’-

T2 which is an excellent substrate for all known mammalian iodothyronine 

sulfotransferases [10]. The rapid sulfoconjugation of the hydroxyl group 

in the outer-ring of 3,3’-T2 forms a hydrophilic sulfated T2 (T2S) with 

enhanced permeability through placental membranes, facilitating the 

transfer of THs to maternal compartments. The T2S of fetal origin appears 

to be rapidly cleared from the maternal circulation via excretion in urine 

[44]. Fetal T4, on the other hand, disappears from the fetal circulation at a 

slower rate; a fast phase (T1/2=2.4 hours) in the first 3 hours followed by 

a slow phase (T1/2 = 17.5 hours). The major metabolites in fetal circulation 

after infusion of 125I-T4 were rT3 and T3 as well as their sulfates, T4S, rT3S 
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and 3, 3’-T2S. Negligible amounts of T3S, roughly 0.7 – 1.2%, were also 

detected [44].  

Similar to fetal T3 infusion, the most abundant metabolite found in 

maternal urine following radioactive T4 infusion is T2S. The T4 infusion 

study also confirms previous data in ovine fetuses [34, 35], indicating that 

the production of active thyroid hormone (T3) is less than the production 

of inactive products, rT3, T2S, rT3S and T3S [44]. 

T3 derived from T4 formed in the fetal circulation is converted to T2S, 

which is then transferred to the maternal compartment for 

deiodination/excretion. Recently, we have found sulfated [125I]-T2S was 

readily detected in the maternal compartment as the major metabolite of 

T3 following the perfusion of placenta with [125I]-T3 in guinea pig (12), 

suggesting that placental deiodinase and sulfotransferase may play an 

important role in fetal T3 homeostasis and in the fetal to maternal transfer 

of sulfated iodothyronine metabolites. This process would contribute to 

the low circulating T3 levels in the fetus. Since T2S appears to be 

quantitatively derived from circulating T3 (the active TH in the fetus), a 

significant increase or decrease in T2S in the maternal circulation would 

suggest hyper- or hypothyroidism in the fetus. In thyroidectomized sheep 

model, we found that 3,3’- T2S excretion in maternal urine reflects fetal 

thyroid function [45].   These data indicate clearly that maternal-fetal 

transfer of TH and its metabolites is a two-way street despite ovine 

placenta is less permeable as compared to rat and/or human (Table 2). 

Furthermore, studies in rats have shown that 3,3’-T2 stimulates 

mitochondrial respiration in various tissues [46]. It is possible that a tight 

regulation of T2 concentration by sulfation and fetal-to-maternal transfer 

would have physiological value. Enhancing fetal-to-maternal transfer 

may protect the fetus from excessive mitochondrial thermogenesis 

stimulated by high fetal concentrations of T2. Another T2, i.e. 3,5-T2, was 

also shown to stimulate mitochondrial thermogenesis [46, 47]; however, 

its production rate is much lower in the fetus due to the inactive D1 

(Figure 1).  

W-Compound, a T2S-immuno-crossreactive compound, 
ought to be considered as a fetal thyroid function marker. 

In humans, we have found high levels of radioimmunoassayable T2S in 

maternal serum [37, 39]; its levels increase with gestational age and 

peaked just prior to parturition.  At delivery, a 20-fold increase in serum 

“T2S” is present compared to nonpregnant women (Figure 2) and “T2S” 

levels return to nonpregnant values in 7 to 10 days after delivery 

(Figure.3).  Serum levels were measured by a T2S-specific 

radioimmunoassay (RIA) in 60 serum samples from newborns with 

hyperbilirubinemia, age 1 to 30 days. It is found that 

radioimmunoassayable T2S is cleared at similar rates in newborn as in 

postpartum maternal sera. This is consistent with the hypothesis that this 

“T2S” is produced in the placenta [46] (Figure 3). 

 

Figure 2: Changes of Compound W at different gestation periods.  Normal values of T2S-crossreactive material (compound W) in serum from 

pregnant women, nonpregnant women (NP), and newborns.  Vertical bars are mean ± 1 SD. * p < 0.05 cf. 3-7 weeks pregnancy. 
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Figure 3: Concentrations of T2S and W-compound in cord serum of newborns and W-compound levels in maternal serum samples at the time of 

deliver (D). The connected lines represent serial measurements in the same patients (n = 18). T2S concentrations also were measured in 14 

nonpregnant women (NP) for comparison. The percent reduction of levels in newborn and maternal groups in semi-log plot in the Insert: black lines 

are newborns; red line is post-partum mother. The closed red squares in vertical bars represent the mean (±SEM) and (n) represent the total number 

of samples studied at each time period in a total of 35 patients. 

On closer examination, the radioimmunoassayable “T2S” did not 

cochromatography with synthetic T2S by HPLC [39], (Figure 4).  Over 40 

known synthetic thyroid hormone analogs that were examined, none was 

found to be identical to the serum T2S-like material in pregnant women 

[49].  Thus, the name W-Compound was given.  It is postulated that W-

Compound is a side-chain modification of T2S, which cross-reacts with 

T2S antibody but is slightly more hydrophobic than T2S.  Consistent with 

being an analogue of iodothyronine, we found high level of iodine content 

in highly purified W-Compound preparation analyzed by a Triple 

Quadrupole ICP-MS (Inductively Coupled Plasma Mass Spectrum) [50]. 

 

Figure 4: Elution patterns of W-compound and T2S which were identified by a sensitive RIA. Samples were eluted from HPLC isocratically with a 

mixture of acetonitrile and 0.02 mol/L ammonium acetate, pH 4.0 (22:78 vol/vol). 

In normal pregnancy, both maternal and fetal W-Compound levels 

increase progressively with a significant direct correlation (p<0.001, in 

both mothers and fetuses) [51], (Figure 5).  In addition, in 436 paired cord 

and maternal sera obtained from women at delivery, there is a highly 

significant correlation between the concentrations of Compound W in 

newborn cord and maternal sera (p<0.01) [49], (Figure 6).  
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Figure 5: W-compound levels in 49 fetal and 64 maternal sera correlation with the weeks of gestation. 

 

Figure 6: Levels of T2S-crossreactive material, W-compound, in paired maternal and cord serum at term.  The solid line is the trend-line from lineal 

regression analysis for the correlation (n = 436, R = 0.686). 

A significant positive correlation is also observed between fetal serum 

concentrations of W-Compound and fetal T4 (p<0.003) and between 

maternal and fetal W-Compound concentrtions (p<0.0001) [51], (Figure. 

7).  However, no significant correlations were observed between maternal 

serum W-Compound and maternal serum T4 in euthyroid or hyperthyroid 

women.  These data strongly suggest the fetal origin of W-Compound.  
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Figure 7: W-Compound levels in fetal serum correlation with serum fetal FT4 (n=29) and maternal W-compound (n=42). 

 
Figure 8: Sulfated iodothyronine (or the equivalence in T2S) levels in arterial (A) and venous (V) cord serum.  Horizontal bars indicate the mean.  * 

For conversion to nmol/L T2S, multiply by 0.0165; nmol/L T3S and rT3S, multiply by 0.0156; nmol/L T4S, multiply by 0.0148. 
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To further explore the possible origin of W-Compound, the serum 

concentrations of sulfated iodothyronines from cord arterial and venous 

blood samples were compared [49].  There were no significant differences 

between the mean T3S, T4S, or reverse-T3S concentrations of arterial and 

venous serum samples.  However, the venous concentration of the T2S-

equivalent material was higher than that in arterial blood in seven of the 

paired samples and lower in two.  The mean “corrected” concentration of 

W-Compound in nine pairs of cord sera was found to be significantly 

higher in venous than arterial blood samples suggesting the fetal origin of  

W [49]. In addition, the mean of the maternal serum concentrations of 

T2S-reactive material was significantly lower than that of the paired cord 

serum concentrations.  The rapid disappearance of W-Compound from 

maternal blood immediately after delivery supports this hypothesis [39], 

(Figure 3).  A similar disappearance slope of serum W-Compound was 

also found in newborn infants [48], (Figure. 3, insert). These findings 

support the postulation that W-Compound is produced in placenta with 

iodothyronine precursor of fetal origin. 

The Measurement of W-Compound: a technical 
consideration.  

The original method for the measurement of W-Compound involves the 

use of RIA which was developed by Wu et al. [39].  Radioimmunoassay, 

in general, is not convenient to most clinical laboratories due to the 

involvement of using a radioisotope I125. 

In a recent study, we have applied a highly sensitive and rapid 

homogeneous time-resolved fluorescence immunoassay to establish an 

indirect competitive W-Compound quantitative detection method called 

AlphaLisa (ICW-AlphaLisa), to measure the levels of W-Compound in 

maternal serum during pregnancy [52].  We developed specific polyclonal 

antibodies against W-Compound [a 3,3′-diiodothyronine sulfate (T2S) 

immuno-crossreactive material] and established an ICW quantitative 

detection method using AlphaLISA.  In this method, photosensitive 

particles (donor beads) were coated with purified W-Compound or T2S 

and rabbit anti- W-Compound antibody, followed by incubation with 

biotinylated goat anti-rabbit antibody.  This constitutes a detection system 

with streptavidin-coated acceptor particle.  We have optimized the test 

conditions and evaluated the detection performance. The sensitivity of the 

method was 5 pg/ml in a detection range of 5-10,000 pg/ml. The intra-

assay coefficient of variation averages <10% with stable reproducibility. 

The ICW-AlphaLISA shows good stability and high sensitivity and can 

measure a wide range of W-compound levels in extracts of maternal 

serum samples. This may have clinical application to screen congenital 

hypothyroidism in utero [52]. 

Brominated flame retardants (BFRs) have been recently shown to disrupt 

TH homeostasis through multiple mechanisms (53), including inhibition 

of enzymes that regulate intracellular levels of THs, such as 

sulfotransferases (SULTs). As discussed in the present review, the 

placenta plays a critical role in expressing D3 and SULTs to prevent the 

developing fetuses from exposure to high level of active thyroid hormone 

T3, which are needed immediately after birth. The adverse effect of BFRs 

is concerning, given that disruption of TH regulation within the placenta 

could potentially harm the developing fetus [28, 29]. Iodothyronines and 

their sulfoconjugates in these studies were measured by liquid 

chromatography-tandem mass spectrometry (LC/MS-MS) [54, 55]. Even 

though the claim was made that this method was comparable to RIA, 

however, the sensitivities to detect for 3,3’-T2 and T2S were difficult to 

judge. Nevertheless, the lowest concentrations of standards used to 

optimize and calibrate the LC/MS-MS varied between 1-10 ng/ml that 

was much higher than the serum levels of 3,3’-T2 and T2S in physiological 

states [37, 53- 56].  

Conclusions 

Sulfoconjugation is a major metabolic pathway for thyroid hormone in 

developing mammals. The significant rise of sulfated iodothyronines in 

fetal compartments raises the possibilities that remarkable fetal to 

maternal transfer of the TH sulfoconjugates may occur throughout the 

second and third trimester in humans.  This transfer may be a novel 

mechanism to maintain low T3 states or regulate serum 3,3’-T2, a 

thermogenic hormone, that is important for normal tissue maturity.  The 

possibility that the transferred iodothyronine sulfate, especially 3,3’-T2S 

and its metabolite, may serve as a biomarker of fetal thyroid function 

needs to be further explored. Because the placenta plays a critical role in 

expressing D3 and SULTs to prevent the developing fetuses from 

exposure to high level of active thyroid hormone T3, which is needs 

immediately after birth. To this end, the non-isotopic method we 

developed [49] provides a very valuable means to facilitate future studies 

on W-Compound as a fetal thyroid function biomarker.  Because 

disruption of TH regulation within the placenta could potentially harm the 

developing fetus [28], further studies are warranted to explore the 

possibility of the maternal serum or urine levels of W-Compound as a 

biomarker for BFR toxicity.  
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DiacS             : Sulfated 3,3’-Diiodothyroacetic Acid  

LAO/AT        :  L-Amino Acid Oxidase/Aminotransferase 

SULT or ST  :  Sulfotransferases  

T1, T2 and T3 :  Mono-, Di-, and Tri-iodothyronine 
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