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Abstract  

Background: Polyunsaturated fatty acids with 20 or 22 carbon atoms are precursors of eicosanoids and docosanoids, which are 

important regulatory molecules in cell physiology. In breast muscle of chickens, we recently reported that percentages of these 

precursors were positively associated. Subsequently, we observed that the concentration ranges of the fatty acids seemed to cause 

the positive associations, e.g. between %EPA (eicosapentaenoic acid, 20:5: n3) and %AA (arachidonic acid, 20:4 n6).  

Aim: To explain further correlations between relative amounts of eicosanoid and docosanoid precursors.  

Methods: Typically, the precursors had low numbers and low variability, as compared with the predominant fatty acids, such 

as oleic acid (18:1 c9). We first present considerations concerning associations in general between relative amounts of three 

positive scale variables, two of which (A, B) having narrow ranges relative to the third one (C). Next, we show results of computer 

experiments to test the reasoning.   

Results and Discussions: We made S = A + B + C, i.e. %A + %B + %C = 100. %A correlated positively with %B, whereas 

%A (%B) related negatively to %C.  The particular ranges of A, B, and C seemed to explain these associations. We found that 

slope of %A (abscissa) vs. %B approached B/A. Furthermore, slope of %A (abscissa) vs. %C approached –(1 +B/A), and that of 

%B (abscissa) vs. %C was near –(1+ A/B). We also show equations of regression lines concerning associations between A (B, 

C) percentages of S, when ranges of A and B are narrow relative to C. Finally, we compare slope values obtained by the formulas, 

and by linear regression.  

Conclusions: We suggest that Intended Ranges of eicosanoid precursor fatty acids might have arisen through evolutionary 

selection, thereby causing Distribution Dependent Correlations, mathematically. Possibly, this selection could improve the 

balance between eicosanoids (docosanoids). 

Definitions and Abbreviations:  

Variability:  the width or spread of a distribution, measured e.g. by the range and standard deviation. 

Distribution: graph showing the frequency distribution of a variable within a particular range. In this article, we also use 

distribution when referring to a particular range, a – b, on the scale. 

Uniform distribution: every value within the range is equally likely. In this article, we may write “Distributions of A, B, and 

C were a - b, c - d, and e - f, respectively”.  

OA = Oleic Acid (18:1 c9); LA = Linoleic Acid (18:2 n6); ALA = Alpha Linolenic Acid (18:3 n3); AA = Arachidonic Acid (20:4 

n6); EPA = EicosaPentaenoic Acid (20:5 n3); DPA = DocosaPentaenoic Acid (22:5 n3); DHA = Docosa Hexaenoic Acid (22:6 

n3); DGLA= Dihomo Gamma Linolenic Acid (20:3 n6); EDA = Eicosa Dienoic Acid (20:2 n6); ETA = Eicosa Trienoic acid 

(20:3 n3). 

Keywords: Fatty Acids; Eicosanoid Precursors; Relative Amounts; Correlation Rules; Ranges; Chicken Muscle  
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Introduction  

This work relates to body fatty acids, which are major diet constituents, 

and important factors in health and disease; polyunsaturated fatty acids 

with 20 or 22 carbon atoms are precursors of eicosanoids and 

docosanoids, which are significant regulatory molecules in cell 

physiology [1, 3]. AA, EPA, DPA, DHA, and DGLA are examples of 

such precursor fatty acids. Most organs and cell types produce 

eicosanoids, as catalyzed by cyclooxygenases, lipoxygenases, and 

epoxygenases [3].  

EPA and AA represent two of the eicosanoid precursors, and these fatty 

acids seem to be metabolic antagonists [1 - 5].  EPA derived eicosanoids 

may decrease inflammatory diseases [6, 7], and may have a positive 

influence on coronary heart diseases [8, 9], and cancer [10]. However, a 

Cochrane Review of selected studies questioned the beneficial effects of 

long-chain n-3 fatty acids on all- cause and cardiovascular mortality [11].  

We might expect positive effects of EPA if the fatty acid works to 

counteract effects of AA. LA, which is a major constituent in many plant 

oils, is the precursor of AA [1]. Under the catalysis of cyclooxygenase 

and lipoxygenase in tissues, AA may be transformed into various 

eicosanoids, i.e. prostacyclin, thromboxane, and leukotrienes [1, 4, 5]. 

Thromboxane A2 (TXA2) and leukotriene B4 (LTB4), synthesized from 

AA, have strong proinflammatory and prothrombotic properties [1, 2, 10], 

and may cause allergy [12]. Thus, an antagonism between EPA and AA 

could possibly explain positive health effects of EPA. In line with this 

reasoning, a decreased EPA/AA ratio in serum seems to be a risk factor 

for cancer death [10].  

Also, docosanoids, originating from C22 fatty acids (DPA, DHA), have 

strong metabolic effects. Among these latter compounds are protectins, 

resolvins, and maresins, which may strongly counteract immune- and 

inflammatory reactions [3, 13].  Also, eicosatrienoic acid, i.e. 20:3 n6 

(dihomo-gammalinolenic acid, DGLA) may give eicosanoids [3]. To our 

knowledge, there are less data on eicosanoids derived from three other 

C20 fatty acids: the two eicosatrienoic acids 20:3 n3 and 20:3 n9 (Mead 

acid), and eicosadienoic acid (20:2 n6).  

We should accordingly expect regulatory mechanisms ensuring a proper 

balance between the relative amounts of EPA and AA, and possibly 

between other eicosanoid (docosanoid) precursor fatty acids. One such 

mechanism could be that increased (decreased) relative amount of one of 

the precursor fatty acid would be accompanied by increased (decreased) 

percentages of many other precursors as well. In line with this reasoning, 

we previously reported strong positive correlations (Spearman’s rho > 

0.7) between relative amounts of many eicosanoid precursors, in breast 

muscle of chickens [14, 15].  

% AA related however negatively to percentages of %OA and %ALA, 

which are predominant fatty acids in chicken muscle [16-19].  

Typically, ranges of fatty acids that are precursors of eicosanoids 

(docosanoids) were narrow compared with ranges of the major-amount 

fatty acids, e.g. OA and ALA [20]. We recently suggested the concept of 

Intended Ranges pertaining to ranges suggested to arise through 

evolutionary selection [21]. Possibly, ranges of eicosanoid precursor fatty 

acids might be examples of such intended ranges.  

When studying associations between relative amounts of eicosanoid 

(docosanoid) precursors, we previously reported great similarity when 

using true values of the precursor, and random numbers in lieu of the true 

values, however with the true ranges [19]. The outcomes were assessed 

using scatterplots and correlation coefficients. The aim of the present 

work was to explain in more detail associations between the precursor 

fatty acid percentages, using random numbers to replace the true values 

of the fatty acids. In particular, we raise the question of whether the 

associations might approach linearity. If so, we aimed at finding 

equations of the regression lines, with particular focus on slope values.  

Materials and Methods  

Previously, we observed in muscle tissue of chickens that eicosanoid and 

docosanoid precursor fatty acids had narrow ranges (low variability) 

relative to ranges of the predominant fatty acids such as OA and ALA; 

the potential precursors were EPA, AA, DGLA, DPA, DHA, EDA, and 

ETA [20].  

In computer experiments, we here used random numbers in lieu of the 

fatty acids, as reported previously [14-20]. To mimic the situation with 

eicosanoids, we made two of the variables (A and B) with narrow ranges, 

and a third (C) with broad range. Thus, C would represent sum of the 

remaining fatty acids, when omitting A and B. We generated uniformly 

distributed random numbers with true ranges. The outcome was, however, 

qualitatively the same if using random numbers with normal distribution 

(results not shown). Thus, A + B + C = S, where S is sum of the variables. 

Furthermore, each of the variables, and accordingly S, would have 

particular ranges, i.e. varying S – values for each of e.g. 200 “cases”.  We 

may express relative amounts of the variables as fractions, or percentages 

of S. The A-, B-, and C-fractions of S would be Af =A/S, Bf = B/S, and 

Cf = C/S. Hence, Af + Bf + Cf =1, or e.g. Bf = -Af + (1 - Cf). Alternatively, 

we may use percentages of S, i.e. %A = (A/S) ·100; %B = (B/S) ·100; and 

%C = (C/S) ·100. Thus, %A + %B + %C = 100, or e.g. %B = -%A + (100 

- %C). These formulas show dependency between the fractions 

(percentages).  

Previously, we reported correlation coefficients (Spearman’s rho), and 

scatterplots of e.g. %EPA (=”%A”) vs. %AA (= %”B”), as found in 

chicken muscle [14 - 22]. We also evaluated the physiological 

concentration distributions (g/kg wet weight) of eicosanoid (docosanoid) 

precursor fatty acids, using histograms. With surrogate random numbers 

of the precursors (named A and B), generated with their true ranges, we 

here carry out further computer experiments, as described in detail under 

Results and Discussions. We focus in particular upon how fractions 

(percentages) of S relate to the range of C. Thus, in the computer 

experiments, A and B represent two eicosanoid precursor fatty acids; C is 

sum of the remaining ones. 

Using SPSS 28.0 for the analyses, and for making figures, we did several 

repeats of the analyses, with new sets of random numbers (n = 200 each 

time). The general outcome of the repeats was always the same, but 

corresponding correlation coefficients and scatterplots varied slightly. 

The significance level was set at p < 0.05. We present further details under 

Results and Discussions. 

Results and Discussions 

Associations between eicosanoid and docosanoid precursor fatty acids  

We previously reported that relative amounts of EPA, AA, DGLA, DPA, 

DHA, EDA, and ETA correlated positively in chicken breast muscle [20]. 

Furthermore, we were able to reproduce the correlations, using random 

numbers in lieu of the true values, if the numbers had true ranges of the 

precursor fatty acids. Below, we try to clarify linearity and slope of 

associations between the precursor percentages. 

Associations between A (B, C) ranges and A (B, C) fractions of S 

If S = A + B + C, we previously [14 - 21] utilized the equation of a straight 

line (y = ax + b), to explain correlations between %A, %B, and %C.  

Additionally, we considered the relationship between S and A (B, C) 

fractions of S. Below, we extend these analyses, focusing upon how 

ranges of the variables relate to the A (B, C) fractions (percentages) of S. 

We define S to be the sum of three positive scale variables (A, B, C), 

making %A + %B + %C = 100. With ranges of the variables included (in 
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parentheses), the equation would be:%A(p-q) + %B(r-s) +%C(t-u) =100, 

or %B(r-s)= - %A(p-q) +(100 -  %C(t-u) 

For simplicity in the presentation, below we omit indication of ranges, 

and mostly use A (B, C) fractions instead of percentages. Thus, Af + Bf 

+ Cf =1. The A-fraction of S is Af = A/(A + B + C) = 1/[1 + (B + C)/A]. 

Similarly, the B fractions of S is Bf = B/(A + B + C) = 1/[1 + (A + C)/B], 

and the C-fraction is Cf = C/(A + B + C) = 1/[1 + (A + B)/C]. We see 

that the three fractions of S have similar structures, and that three ratios 

govern the fractions, i.e. R1 = (B + C)/A; R2 = (A + C)/B, and R3 = (A + 

B)/C, respectively.  Thus, sum of two of the variables makes the 

numerators of the three ratios, and the remaining one is the denominator.  

Furthermore, each of the fractions  Af = 1/[1 + (B + C)/A]; Bf = 1/[1 + 

(A + C)/B]; and Cf = 1/[1 + (A + B)/C] should decrease as the numerators 

of R1 (R2, R3) increase, and  increase as the denominators increase.   

Since these fractions are functions of three variables, each of which with 

particular ranges, it could in general be hard to predict the combined 

influence of A, B, and C upon each of the fractions. However, in some 

situations we might predict how the fractions should respond as A (B, C) 

goes from lowest to highest value within the range. Below, we present 

one of these conditions, presumably relating to ranges of eicosanoid 

(docosanoid) precursor fatty acids (vide infra). We previously reported 

that ranges of these fatty acids were narrow relative to the large-amount 

fatty acids, e.g. OA and ALA, as observed in chicken muscle [19,20].  

When reasoning about associations between ranges and A (B, C) 

fractions, a crucial point would be to clarify whether there is a main 

variable, and how each of the fractions should relate to this variable. As 

discussed below, we suggest that the main variable should have broad 

range relative to ranges of the other variables. Furthermore, we would 

expect positive (negative) associations between fractions (percentages) of 

two of the three variables, if their relative amounts relate similarly (in 

opposite directions) to the main variable. 

Mimicking ranges of eicosanoids: Two of three variables (A, B) having 

narrow ranges relative to a third one (C) 

We previously encountered variables in physiology with narrow ranges 

of some variables relative to others [14-26]. For example, in chicken 

breast muscle, the concentration of fatty acids that are precursors of 

eicosanoids (docosanoids) had narrow ranges as compared with other 

fatty acids [20]; the former ones had coefficients of variation about 10%, 

against 40 to 60% for other fatty acids.  

Very narrow range of a variable would make this variable approaching a 

fixed number. Thus, with two of three variables approaching constants, 

we have one main variable only, implying that all fractions would depend 

mainly on this variable. To elucidate direction and strength of associations 

between fractions in this case, we start studying associations between 

fractions when two (A, B) of three variables are constants, and the third 

(C) has broad range. Below, we reason about linearity, slope, and equation 

concerning these associations. 

LINEARITY and SLOPE of Af (abscissa) vs. Bf when ranges of A and B 

are very narrow relative to the C-range 

To clarify the association between Af and Bf in this case, we consider Af 

= 1/(1 + B/A + C/A), and Bf = 1/( 1 + A/B + C/B). Since A and B are 

close to constants, we may simplify to Af = 1/(k + C/A), and Bf = 1/( t + 

C/B), where k = 1 + B/A, and t = 1 + A/B.  Accordingly, both fractions 

should decrease as C increases, implying that Af should correlate 

positively with Bf. Since Af and Bf depend mainly on C, we make C the 

abscissa variable when plotting C vs. Af (Bf).   

We next raise the question of whether the Af vs. Bf association is linear 

in this particular case. If so, we should find a constant slope estimate, i.e. 

ΔY/ΔX. When computing slope estimates of associations between e.g. Af 

and Bf, it is crucial to know which one is the abscissa and the ordinate. 

Below, we clarify by writing Af (abscissa) vs. Bf, Af (abscissa) vs. Cf, and 

Bf (abscissa) vs. Cf.  

To investigate linearity (slope) of the Af (abscissa) vs. Bf association, we 

raise the question of what happens to Bf (= Y), as Af (= X) increases, 

realizing that X as well as Y are mainly functions of C. For simplicity, we 

first consider A and B to be constants. If there is a linear relationship 

between X and Y, the equation of a straight line (y = ax + b) should apply. 

Thus, we should expect ΔY/ΔX = (Y2 – Y1)/(X2 – X1) to be constant. Thus, 

we find the C value (C1) corresponding to X1 and Y1. X1 = A/(A + B + 

C1); i.e. C1 = (A – AX1 – BX1)/X1. We next compute C2 (corresponding to 

X2 and Y2) by adding ΔX to X1. To simplify the presentation, below we 

use ΔX = 1, however obtaining the same result if using just ΔX (not 

shown). Hence, X1 +1 = A/(A + B + C2), giving C2 = (- B – AX1 – 

BX1)/(X1 + 1).  

To find ΔY, we use C1 and C2, and compute Y1 and Y2. Thus, Y1 = 

B/(A+B+C1); i.e. 

Y1 = X1·B/A. Similarly, Y2 =B/(A + B + C2); i.e.Y2 = (X1 + 1)·B/A. 

Accordingly, ΔY = Y2 - Y1 = (X1 + 1)·B/A – X1·B/A = B/A, which is the 

change in Y per one-unit increase in X1, i.e. ΔY/ΔX = (B/A)/1= B/A. Thus, 

there should be a linear, positive association between Af (%A=abscissa) 

and Bf (%B), the slope being estimated by ΔY/ΔX = B/A.   

LINEARITY and SLOPE of Af (abscissa) vs. Cf, when ranges of A and B 

are very narrow relative to the C- range 

If there is a linear relationship between Af (=X) and Cf (=Y), the equation 

of a straight line (y = ax + b) should apply to the relationship. Thus, we 

should find a constant slope value equal to ΔY/ΔX = (Y2 – Y1) /(X2 –X1). 

We accordingly need to find what happens to ΔY when increasing X1 by 

ΔX, e.g. by one unit. Realizing that C governs both X and Y, we first find 

the C-values (C1, C2) that correspond to X1 and X2 = X1 +1. Below, we 

use A and B to denote the near to constant values of A and B.  

Finding C1 and C2: By definition, X1 = A/(A + B + C1), i.e. C1 = ( A – 

AX1 – BX1)/X1. To find C2, we add one X-unit to X1. Thus, (X1 + 1) = 

X1/(A + B + C2), i.e. C2 = (- B – AX1 – BX1)/(X1 + 1). 

Computing Y1 and Y2: We use the above expressions of C1 and C2 to find 

the Y- values (Y1 and Y2) corresponding to X1 and X2. Thus, Y1 = C1/(A 

+ B + C1);i.e. Y1 = [(A – AX1 – BX1)/X1]/[A + B +(A – AX1 – BX1)/X1]. 

Simplifying this expression, we obtain  

Y1 = (A – AX1 – BX1)/A. 

To find Y2, we use C2, i.e. Y2 = C2/(A + B + C2). Inserting the expression 

above, in lieu of C2, we obtain: Y2 = [(- B – AX1 – BX1)/(X1 + 1)]/[ A + B 

+ (- B – AX1 – BX1)/(X1 + 1)]. Simplifying this expression, we obtain Y2 

= (-B –AX1 – BX1)/A.  

Accordingly, ΔY = Y2 – Y1 = (-B – AX1 – BX1)/A – (A – AX1 – BX1)/A = 

(-B – A)/A, i.e.  

ΔY = – (1 + B/A), which is the change in Y corresponding to a one-unit 

increase in X, i.e. ΔY/ΔX = – (1 + B/A)/1 = – (1 + B/A). Thus, Af ( %A 

=(abscissa) should have a negative, linear relationship to CF (%C), with 

slope = ΔY/ΔX = – (1 + B/A). 

LINEARITY and SLOPE of Bf (abscissa) vs. Cf when ranges of A and B 

are very narrow 

Using the approach above, we find that Bf (abscissa) should have a 

negative, linear association with Cf, the slope being estimated by ΔY/ΔX 

= – (1 + A/B). 

Thus, if A, as well as B have very narrow ranges relative to C, then we 

have three slope estimates for the linear associations between relative 
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amounts of A (B, C).  1) B/A estimates slope of %A(abscissa) vs. %B; 2) 

– (1 + B/A) estimates slope of %A (abscissa) vs. %C; and 3) – (1 + A/B) 

estimates slope of %B (abscissa) vs. %C.               

We suggest that the slope estimates found above should apply also to 

conditions where the ranges of A and B are somewhat broadened. 

However, since we then would violate the requirement of having near 

constant values of A and B (relative to C), the scatterplots – and 

correlation coefficients - should be poorer, and the slope estimates should 

not work well, especially if increasing the A and/or B ranges appreciably 

(vide infra).  

Suggested general rule, pertaining unit systems consisting of three 

positive scale variables (A, B, C, with S = A + B + C), where A and B 

have very narrow ranges relative to C:  

%A (abscissa) should have a positive, linear association with %B, with 

slope approaching B/A.  Furthermore, %A (abscissa) should have a 

negative, linear association with %C, with slope approaching – (1 + B/A), 

and %B (abscissa) should relate linearly and negatively to %C, with slope 

approaching – (1 + A/B). 

If using these formulas, we emphasize that A and B must be the two close-

to-constant variables, and C the broad-range variable. The crucial point 

is to define the abscissa variable correctly.  

Finding EQUATION of the positive, linear Af (abscissa) vs. Bf 

association when ranges of A and B are very narrow relative to the C-

range 

We next try to find the complete equation of the relationship between 

relative amounts of A and B, knowing that the formula of a straight line 

(y = ax + b) should apply. Above, we computed the slope value to 

approach B/A, if A and B have very narrow ranges relative to C. Thus, if 

Y = Bf and X = Af, we have Y = (B/A)·X + b. To find b, we use 

corresponding values of X and Y, e.g. their maximum or minimum values. 

Thus,  

b = Ymin – (B/A) · Xmin, and b = Ymax – (B/A) · Xmax. Accordingly, 

equation of the linear, positive X (Af) vs. Y (Bf) association should be:  

      Y = (B/A)·X +Ymin – (B/A) · Xmin , or  Y = (B/A)·X +Ymax – (B/A) 

· Xmax 

Example:  A = 1, B = 2, C 1-10.  We first use minimum and maximum 

values of X (= Af) and Y (= Bf). Thus, Y = B/(A + B + C) = 1/[1 +(A + 

C)/B];  Ymin = 1/[1 +(A + Cmax)/B],  i.e. Ymin = 1/[1 +(1 + 10)/2] 

=1/6.5 = 0.154 (15.4%).  

Similarly, X (=Af) = A/(A + B + C) = 1/[1 +(B + C)/A]. Thus, Xmin = 

1/[1 +(2 + 10)/1] =  0.077 (7.7%).  Inserting the actual numbers into Y = 

(B/A)·X +Ymin – (B/A) · Xmin, we obtain Y = (2/1)·X + 0.154 – 

(2/1)·0.077 = 0, i.e. Y = 2X.  Thus, Bf = 2Af, or %B = 2·%A   

We obtain the same result if using maximum values of X and Y to compute 

b. Thus,  

Ymax = 1/[1+ (A +Cmin)/B] = 1/[1 +(1+1)/2] = 0.5. Similarly, X =Af = 

A/(A + B + C) = 1/[1 +(B + Cmin)/A). Xmax = 1/[1 + (2 + 1)/1]  = 0.25. 

Using the equation above, i.e.  

Y = Af = (B/A)·X + Ymax – (B/A) · Xmax, we obtain Y = (2/1) ·X + 0.5 

– 2·0.25= 2X. Thus, Y = 2X, which may be written Bf =2Af, or %B = 

2·%A.   

Thus, in this particular case, Af vs. Bf shows a straight line with slope = 

2. The extrapolated line should pass through (X, Y = 0, 0). 

Finding EQUATION of the linear, negative Af (abscissa) vs.  Cf 

association  

As shown above, there should be a linear, negative association between 

Cf and Af (Bf). We define Cf = Y, and Af = X. Applying the equation of 

a straight line (y = ax + b), and the slope expression computed above, we 

have Y = - (1 + B/A)·X + b. We find b using corresponding values of X 

and Y, e.g. their maximum (minimum) values. Since there is an inverse 

relationship between X and Y, Ymax corresponds to Xmin,  

Thus, Ymax = -(1 + B/A)·Xmin + b , and Ymin = -(1 + B/A)·Xmax + b. 

We compute  

b = Ymax + (1 + B/A)·Xmin.  Inserting this b-value into Y = - (1 + B/A)·X 

+ b, we obtain 

                                  Y = - (1 + B/A)·X  + Ymax + (1 + B/A)·Xmin 

We next need to find Ymax and Xmin. By definition, Cf (i.e. Y) = C/(A+ 

B + C) = 1/[ 1 + (A + B)/C].  Using numbers of the example above, i.e. 

A = 1; B = 2.0; C 1- 10, we obtain Ymax = 1/[1 + (1 + 2)/10] = 1/1.3 = 

0.77. Similarly, Af (i.e. X) = A/(A + B + C) = 1/[1 + (B + C)/A]. Thus, 

Xmin = 1/[1 + (2 + 10)/1] = 0.077. The equation of X vs. Y in this case 

should be Y = -(1 +2/1)·X + 0.77 + (1 + 2/1)·0.077 = 1, i.e. Y = -3X + 1. 

Accordingly, the inverse, linear association between X (Af ) and Y (Cf) 

should be Y = -3X + 1.00 . Since Y = Cf, and X = Af , we may write  Cf 

= -3Af + 1.00 , or %C = -3·%A + 100. 

Alternatively, we could use Ymin = -(1 + B/A)·Xmax + b, i.e. b = Ymin 

+(1 + B/A)·Xmax Hence, the alternative, general formula would be  

                                Y = - (1 + B/A)·X  + Ymin + (1 + B/A)·Xmax 

Finding Ymin and Xmax:  Cf (i.e. Y) = C/(A+ B + C) = 1/[ 1 + (A + B)/C 

. Thus, Ymin = 1/[1 + (1 + 2)/1] = 0.25. Af (i.e. X) = A/(A + B + C) = 1/[1 

+ (B + C)/A], i.e. Xmax = 1/[1 + (2 + 1)/1] = 0.25. We insert the numbers 

into the general formula, i.e. Y = - (1 + 2/1)·X  + 0.25 + (1 + 2/1)·0.25, i.e. 

Y = -3X + 1. Thus, the equation of the negative Af vs. Cf association 

should be Cf = -3·Af + 1.00 (or %C = -3·%A + 100). 

Finding EQUATION of the linear, negative Bf (abscissa) vs.  Cf 

association  

The general equation is Y = - (1 + A/B)·X + b, where Y =  Cf and X = Bf.  

We find b using corresponding values of X and Y, e.g. their maximum 

(minimum) values. Since there is an inverse relationship between X and 

Y, Ymax corresponds to Xmin.  

Using the slope value found above, we have Ymax = -(1 + A/B)·Xmin + 

b , and Ymin = -(1 + A/B)·Xmax + b. We next compute b = Ymax + (1 + 

A/B)·Xmin = Ymax + (1 + A/B)·Xmin . Accordingly, the general formula 

would be 

                                 Y = - (1 + A/B)·X  + Ymax + (1 + A/B)·Xmin 

We may alternatively use Xmax and Ymin, giving the equation  

                                  Y = - (1 + A/B)·X  + Ymin + (1 + A/B)·Xmax 

With the example above, i.e. A = 1; B = 2.0; C 1- 10, we find max (min) 

value of Cf (=Y), and min (max) value of Bf (=X). Since Cf = C/(A + B + 

C) = 1/[1 + (A + B)/C], Cfmax = 1/[1 + (1 + 2)/10] =0.77, and Cfmin = 

1/[1 + (1 + 2)/1] =0.25.  

Similarly, Bf = B/(A + B + C) = 1/[1 + (A + C)/B]; Bfmin = 1/[1 + (1 + 

10)/2] = 1/6.5 = 0.154, and Bfmax =1/[1 + (1 + 1)/2] = 0.5.  

Thus, Cf = - (1 + A/B)·Bf  + Cfmax + (1 + A/B)·Bfmin = -1.5·Bf + 0.77 + 

1.5·0.154, i.e. 

Cf = -1.5Bf + 1.00, or %C = -1.5·%B + 100.  Alternatively, we may 

compute Cf = -1.5·Bf + 0.25 + 1.5·0.5, i.e. Cf = -1.5Bf + 1.00.  
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Computer Test: With A = 1; B = 2.0; C 1- 10, the A (B, C) - fractions of 

S are Af = 1/(3 + C); Bf = 2/(3 +C); and Cf =C/(3 + C)= 1/(1 +3/C). 

Thus, C is the only variable; Af and Bf should decrease as C runs from 

lowest to highest value, whereas Cf should increase (Fig. 1, upper panels).  

Accordingly, we should expect a strong positive association between %A 

and %B, whereas %C should relate negatively to %A and %B. The 

outcome was as expected (Fig.  1, lower panels). There was a perfect 

positive %A vs %B association (rho = 1.000, p<0.01, n =200), with 

equation %B = 2·%B. %C correlated negatively with %A (%B), rho = -

1.000 (-1.000), p<0.01 for both; n =200. Equations of the lines were %C 

= -3·%A + 100, and %C = -1.5·%B + 100. We previously explained the 

curvilinear associations, shown in the top panels [21]. 

 
Figure 1:  Scatterplots of C vs. %A, %B, and %C (upper panels), and between A (B, C) percentages (lower panels), with reference to the equation S 

= A + B + C, i.e.  %A + %B + %C = 100, see text. Random numbers (n = 200) with uniform distribution were generated. A = 1.0; B = 2.0; C 1-10.   

Spearman’s rho = 1.000 for %A vs. %B, and rho = -1.000 for %A vs %C, and %B vs %C; p<0.01 for all. Equations of lines: %B =2·%A; %C = -

3·%A + 100; %C = -1.5·%B + 100. 

From the formulas above, slope of %A (abscissa) vs %B should be B/A = 

2/1 = 2.0. Slope of %A (abscissa) vs. %C should be – (1 + B/A) = - 

(1+2/1) = -3. Finally, slope of %B (abscissa) vs. %C should be - (1+A/B) 

= - (1+1/2) = -1.5.  These slope values were equal to the corresponding 

ones made by the computer.  

Making ranges of A, B, and C more similar     

Above, we argued that associations between A (B, C) percentages of S 

should improve, if making the A (B, C) ranges very different. It follows 

that associations should be poorer if making the ranges more similar. This 

outcome probably relates to poorer scatterplots of C vs. %A (%B, %C), 

if making A (B) deviate appreciably from constants, and narrowing the 

C- range.    

Computer Test: To make A and B deviate somewhat more from the near-

to-ideal example shown in Fig. 1,  we broadened the ranges of A, B to be 

A 1-2, B 3-5. The scatterplots became poorer, as predicted (Fig. 2).  C vs. 

%A (%B, %C): rho = -0.768 (-0.936, 0.976). %A correlated positively 

with %B, rho = 0.586; and %C related negatively to %A (%B), rho = -

0.770 (-0.964), p<0.01 for all. 

 
Figure 2: Effect of changing ranges upon the relationships between relative amounts of A (B, C) and C (upper panels), and between %A , %B,  and 

%C (lower panels). The figure relates to the equation %A + %B + %C =100, see text. We generated uniformly distributed random numbers (n =200) 

with ranges A 1-2, B 3-5, and C 1-10. C vs. %A (%B, %C), rho = -0.768 (-0.936, 0.976); %A vs. %B, rho = 0.586; %C vs. %A (%B), rho = -0.770 (-

0.964), p<0.01 for all. 
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Equal ranges of A, B, and C 

To substantiate further, that appreciable differences in ranges between A, 

B, and C govern the associations between their relative amounts, we now 

raise the question of how A (B, C) percentages of S should relate, if all of 

the three variables have equal ranges. Considering the formulas, we 

might in this case expect a negative association between Af = 1/[1 + (B + 

C)/A]  and B (C), and a positive Af vs. A association. Furthermore, Bf = 

1/[1 + (A + C)/B] should relate negatively to A and C, but positively to 

B. Finally, Cf = 1/[1 + (A + B)/C] should be negatively associated with 

A and B, but positively with C. Thus, when considering associations 

between Af (Bf, Cf) and one of the three variables, the remaining two 

variables would disturb the associations. To obtain a positive association 

between e.g. Af (%A) and Bf (%B), both of them should preferably relate 

similarly to all of the A, B, and C variables. However, this requirement 

does not seem to exist, with similar ranges of the variables. To make a 

visual overview, we made scatterplots. The graphs show associations 

between fractions (percentages) and ascending values of A, B, and C 

(Fig.3). For example, for %A and %B, we see that these percentages 

respond in opposite directions as A and B increases, but similarly as C 

increases. 

 
Figure 3: Associations between A (B, C) variables and A (B, C) percentages of S. The figure refers to the equation A + B + C = S, see text. Upper 

panels: Scatterplots of %A vs. A (B, C). Middle panels: %B vs. A (B, C). Lower panels: %C vs. A (B, C). Range of A (B, C) was 1 - 3.  Upper panel: 

%A vs. A (B, C); rho = 0.862 (-0.446, -0.283), p<0.01, n = 200 for all. Middle panel: %B vs. A (B, C); rho = -0.514 (0.814, -0.418), p<0.01, n = 200 

for all. Lower panel: %C vs. A (B, C); rho = -0.314 (-0.362, 0.832), p<0.01, n = 200 for all. 

The scatterplots suggest that the positive associations were somewhat 

better than the negative ones, as supported by the correlation coefficients. 

In upper panels, for %A vs. A (B, C) we found rho = 0.862 (-0.446, -

0.283), p<0.01, n = 200 for all. In the middle panel, the correlation 

coefficients for %B vs. A (B, C) were -0.514 (0.814, -0.418), p<0.01, n = 

200 for all. Finally, in lower panels, for %C vs. A (B, C), we found rho = 

-0.314 (-0.362, 0.832), p<0.01, n = 200 for all. 

Thus, Af and Bf respond in opposite directions as two of the variables (A, 

B) increase, but in the same direction as one of them (C) increases. We 

might, accordingly, at best expect a weak negative %A vs. %B 

association. The same type of reasoning goes for %A vs. %C, and for %B 

vs. %C, i.e. all associations between %A, %B, and %C should be weakly 

negative, in the current context. The computer test seemed to be in 

accordance with this reasoning (Fig. 4). %A vs. %B: rho = -0.568; %C 

vs. %A: rho = -0.421; %C vs. %B: rho = -0.458, p<0.01 for all, n = 200.  

 
Figure 4: Associations between A (B, C) percentages of S. The figure refers to the equation A + B + C = S, see text. . Range of A (B, C) was 1 - 3.  

%A vs. %B: rho = -0.568; %C vs. %A: rho = -0.421; %C vs. %A: rho = -0.458, p<0.01 for all, n = 200. 
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We did additional computer experiments with many other ranges of A, B, 

and C, however always making A (B, C) ranges equal. The correlation 

outcomes turned out to be qualitatively similar to the corresponding ones 

presented in Fig. 4 (results not shown). 

Further Experiments Concerning Effects on associations between A (B, 

C) percentages of S, if violating the requirement that A and B should be 

close to fixed numbers 

In the above example, we used constants in lieu of variables for A and B.  

However, in physiology, we regularly encounter variables with particular 

ranges.  Below, we present some examples to investigate equations of 

regression lines concerning associations between percentages of A, B, and 

C, if violating the above mathematical requirements that A and B should 

be very close to fixed numbers. We accordingly studied how increasing 

the ranges towards higher values might influence associations between A 

(B, C) percentages of S. We mainly had our attention on slope values, 

since the aim of the present work was to elucidate associations between 

relative amounts of eicosanoids. 

Increasing A and B by 10%, to make ranges A 1.0 - 1.1; B 
2.0 - 2.2; C 1 - 10 

With this broadening, the correlation pattern prevailed, and the points 

were still well scattered close to straight lines (Fig. 5). %A(abscissa) vs. 

%B: rho = 0.991; %A(abscissa) vs. %C: rho = -0.996; %B(abscissa) vs. 

%C: rho = -0.999; p<0.01 for all, n = 200. The computer - made equation 

of the linear relationships did not deviate much from those found by the 

formulas above. Equation of the regression lines were (SE in 

parentheses): %B = 1.99 (0.01)·%A + 0.07 (0.02); %C = -2.99 (0.02)·%A 

+ 99.9 (0.24); %C = -1.50 (0.004)·%B + 99.9 (0.12). 

 

 
Figure 5:  Scatterplots of associations between A (B, C) percentages, with reference to the equation S = A + B + C, see text. Ranges were A 1.0-1.1; 

B = 2.0 – 2.2; C 1 – 10. %A vs. %B: rho = 0.991; %A vs. %C: rho = -0.996; %B vs. %C: rho = -0.999; p<0.01 for all, n = 200. 

Increasing A and B by 20%, to make ranges A 1.0 - 1.2; B 
2.0 - 2.4; C 1 – 10 

The correlation pattern prevailed, but the points were scattered at some 

distance from the regression lines (Fig. 6). %A vs. %B: rho = 0.972; %A 

vs. %C: rho = -0.997; %B vs. %C: rho = -0.996; p<0.01 for all, n = 200. 

Equation of the regression lines were (SE in parentheses): %B = 1.99 

(0.04)·%A + 0.40 (0.54); %C = -2.99 (0.04)·%A + 99.6 (0.55); %C = -

1.47 (0.01)·%B + 99.3 (0.26). 

 

 
Figure 6:  Scatterplots of associations between A (B, C) percentage, with reference to the equation S = A + B + C, see text. Ranges were: A 1.0-1.2; 

B = 2.0 - 2.4; C 1 - 10. %A vs. %B: rho = 0.972; %A vs. %C: rho = -0.997; %B vs. %C: rho = -0.996; p<0.01 for all, n = 200. 

Increasing A and B by 50%, to make ranges A 1.0 - 1.5; B 
2.0- 3.0; C 1 - 10 

The correlation pattern prevailed also in this case, but the points were 

poorly scattered around the regression lines (Fig. 7). %A vs. %B: rho = 

0.837; %A vs. %C: rho = -0.922; %B vs. %C: rho = -0.981; p<0.01 for 

all, n = 200. Equation of the regression lines were (SE in parentheses): 

%B = 1.70 (0.08)·%A + 4.11(1.21); %C = -2.70 (0.08)·%A + 95.9 (1.21); 

%C = -1.42 (0.02)·%B + 97.4 (0.59). 

 
Figure 7:  Scatterplots of associations between A (B, C) percentages, with reference to the equation S = A + B + C, see text. Ranges were A 1.0 -1.5; 

B = 2.0 - 3.0; C 1 - 10. %A vs. %B: rho = 0.837; %A vs. %C: rho = -0.922; %B vs. %C: rho = -0.981; p<0.01 for all, n = 200. 
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Increasing A and B by 100%, to make ranges A 1.0 - 2.0; 
B 2.0 - 4.0; C 1 - 10 

Even with this appreciable violation of the above requirement (i.e. A and 

B approaching constants), the pattern of the regression lines for 

associations between the A (B, C) percentages still prevailed, however 

with poor scatterplots (Fig. 8).  %A vs. %B: rho = 0.611; %A vs. %C: rho 

= -0.823; %B vs. %C: rho = -0.933; p<0.01 for all, n = 200.  Furthermore, 

computer-made formulas of regression lines deviated appreciably from 

those made manually using the above equations. Equation of the 

regression lines (made by the computer) were (SE in parentheses): %B = 

0.98 (0.11)·%A + 16.1(1.80); %C = -1.98 (0.11)·%A + 83.9 (1.80); %C 

= -1.13 (0.03)·%B + 93.8 (1.13). 

 
Figure 8:  Scatterplots of associations between A (B, C) percentages, with reference to the equation S = A + B + C, see text. Ranges were A 1.0 – 

2.0; B = 2.0 - 4.0; C 1 - 10. %A vs. %B: rho = 0.611; %A vs. %C: rho = -0.823; %B vs. %C: rho = -0.933; p<0.01 for all, n = 200. 

It would appear, accordingly, that we may find the basic patterns 

concerning associations between A (B, C) percentages of S, in spite of 

strongly deviating from the demand of having A and B close to constants. 

It follows that the analyses presented in this article may explain why 

eicosanoid (docosanoid) precursor percentages correlate positively. The 

reason seems to be that their ranges are narrow as compared with ranges 

of the major-amount fatty acids, and accordingly also with total sum of 

the fatty acids, as we reported previously [18].  However, the equations 

presented above concerning regression lines between relative amounts of 

three variables do not apply, if strongly violating the above requirements.   

Comparing slope estimate based upon 1) the B/A ratio; 2) linear 

regression with true values; and 3) linear regression using random 

numbers with true ranges   

To clarify whether we might use the B/A ratio as a crude estimate of the 

slope of associations between eicosanoid precursor percentages, we 

compared values of the B/A ratio, with slope estimates obtained from 

regression lines made by the computer. We additionally compared slope 

values obtained by linear regression, and using either true (measured) 

values of the fatty acids, or random numbers having the true ranges. 

Ranges (g/kg, in parentheses) of the seven fatty acids under investigation 

were [20] EPA (0.13-0.24); AA (0.25-0.42); EDA (0.04-0.06); DPA 

(0.21-0.43); DGLA (0.06-0.11); DHA (0.11-0.32); and ETA (0.04-0.09). 

Explanation of abbreviations appear on Page 1. In Table 1, we present six 

of the altogether 21 pair combinations of these seven-eicosanoid 

precursor fatty acids (i.e. we show only 18 of the 63 slope estimates). In 

general, with all of the pairs, we found the pattern presented in Table 1.  

It turned out that the computer-made slope estimates based upon true 

values, and upon the substitute random numbers with true ranges, did not 

differ much (middle and right columns). However, the B/A ratio (Table 

1, left column) seemed to give somewhat higher values. 

Pair (“A” vs.” B”) Slope, by 

B/A ratio 

Slope, by true 

values 

Slope, by random numbers 

%EPA vs. %AA  1.8 1.2 (0.08) 1.4 (0.09) 

% EDA vs %AA 6,2 5.6 (0.36) 5.3 (0.28)  

%DPA vs %AA 1.0 0.8 (0.03) 0.7 (0.05) 

%DGLA vs. %AA 3.9 3.2 (0.20) 2.8 (0.1|6) 

%DHA vs %AA 1.6 0.9 (0.06) 0.8 (0.08) 

%ETA vs. %AA 5.2 3.7 (0.36) 4.1(0.30) 

Table 1: Three slope estimates of the linear association between %AA and other eicosanoid (docosanoid) precursor percentages. The table refers to 

the general equation A + B + C = S, i.e. %A + %B + %C = 100, see text. Here, A and B represent eicosanoid (docosanoid) precursor fatty acids. C 

is sum of the remaining fatty acids, when omitting A and B. Left column: B/A ratio, computed as mean of B divided by mean of A (n = 200). Middle 

column: slope from equation of regression line, using true values of the precursor fatty acids [19]. Right column: slope from equation of regression 

line, using random numbers with true ranges of the precursors [19]. EPA = eicosapentaenoic acid (20:5 n3); AA = arachidonic acid (20:4 n6); EDA 

= eicosadienoic acid (20:2 n6); DPA = docosapentaenoic acid (22:5 n3); DGLA= dihomo-gamma-linolenic acid (20:3 n6); ETA = eicosatrienoic 

acid (20:3 n3). 

The denominator  

Above, we showed that if A + B + C = S, then the slope of %A (abscissa) 

vs. %B would approach B/A, if ranges of A and B were very narrow. 

Thus, C did not influence the slope estimate in this particular condition. 

Additionally, we showed that the B/A ratio seemed to apply also when 

slightly broadening the A (B) ranges.  Furthermore, we previously 

reported similar slope values for associations between eicosanoid 

precursor percentages, if using true values of the fatty acids, or substitute 

random numbers, however with true ranges. Below, we carry out a 

preliminary experiment to see if the B/A ratio may estimate slope of the 

association between percentages of such random number substitute 

values, if varying the C- range. 

To represent two “random number fatty acids”, we arbitrarily chose A = 

“EPA” (range 0.13 - 0.24), and B = “AA” (range 0.25 - 0.42), and 

examined whether a change in the range of C = S - A - B might influence 

the slope estimate, found by linear regression. Thus, we make C sum of 

the remaining fatty acids when omitting “EPA” and “AA”. Mean “EPA” 

was computed as (0.13 + 0.24)/2 = 0.185, and mean “AA” = (0.25 + 
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0.42)/2 = 0.335. Hence, slope of %”EPA” (abscissa) vs. %”AA”, 

calculated manually would be B/A = 0.34/0.19 = 1.79. The true range of 

C is near 3-15 [20]. By linear regression, and using range 3 - 15 for C, we 

found slope (SE in parenthesis) of %A (abscissa) vs. %B (i.e. %”EPA” 

vs. %”AA”) to be 1.52 (0.06).  We obtained similar slope values using C 

3 - 10, and C 3 - 20 , i.e. slope values being 1.56 (0.08), and 1.57 (0.06), 

respectively.  It would appear, accordingly, that the B/A ratio is useful to 

predict that there should be a positive association between %EPA and 

%AA. C is the major variable of the denominator when computing 

fractions (percentages) of S. However, this experiment suggests that the 

range of C, in a physiological context, probably does not have a major 

influence on slope direction of the %A vs. %B association. This outcome 

seems reasonable since the A and B fractions (percentages) of S should 

decrease as C runs from lowest to highest value, and would be largely 

unaffected by the C range. However, appreciable narrowing the C-range 

should disturb the %A vs. %B association (see below). The B/A ratio 

seemed in general to give slightly higher slope values than those obtained 

from equations of regression lines. This point probably is of minor 

importance in the current context, since we here focus mainly upon 

direction and strength of associations between relative amounts of 

eicosanoid precursor fatty acids. 

Altering the range of just one of the A (B, C) variables 

Above, we studied correlations between %A, %B, and %C when A = 1, 

B = 2, C 1 - 10, i.e. C was the only variable. We additionally investigated 

the influence of giving A, as well as B increased ranges, simultaneously. 

We now examine effects of altering the range of either A, B, or C on 

correlations between their relative amounts.  

Giving range to either A or B  

It turned out that also this violation of the above requirements weakened 

the associations between the A (B, C) percentages of S, as observed in 

scatterplots, correlation coefficients, and slope values (not shown). The 

explanation is that with two main variables (C and A, or C and B), the 

requirement above would not be fulfilled.   

Increasing the C - range only, while keeping A and B as fixed numbers 

We finally studied whether changes in the C - range only might influence 

scatterplots and correlations between A (B, C) percentages. However, in 

that case, all of the fractions, i.e. Af = 1/[1 + (B + C)/A], Bf = 1/[1 + (A 

+ C)/B], and  Cf = 1/[1 + (A + B)/C] would still be dependent upon one 

variable only (C). We should not expect, accordingly, any change in the 

slope values.  

Notably, when computing slope values using the formulas above, the C-

variable disappeared from the original equations, implying that the slope 

estimates do not depend on this variable, under the current conditions. 

However, when computing percentages of S = A + B + C, all of the 

variables would make their contributions, when evaluating how 

associations between scatterplots should appear. We may illustrate the 

influence of the C-range upon the %A vs. %B (%C) scatterplots, or that 

of %B vs. %C, by comparing the outcomes when the C-range is very 

broad, against the situation with a very narrow range of C.  As suggested 

above, we should expect the slope values to be equal in both cases, since 

C is the only variable when A, and B are approaching constants. 

Furthermore, when making scatterplots of associations between A (B, C) 

percentages, we should find all points exactly on lines, and with equal 

corresponding slope values, irrespective of the C- ranges. To test this 

reasoning, we compared scatterplots found with extremely different 

variabilities of C, i.e. C 1 - 100, and C 1.00 - 1.01, emphasizing that we 

did this this experiment just to illustrate a mathematical point, without any 

relationship to physiology. 

The test showed (Fig. 9) that corresponding slope values were the same, 

irrespective of making C with very broad range (Fig. 9, upper panels) or 

very narrow range (Fig.9 , lower panels). For both of these widely 

differing C - ranges, we found equal corresponding slope values (Fig. 

upper panels compared with lower panels). Furthermore, slope values 

made by the computer were equal to those made by the formulas, i.e. B/A 

=2.00 for %A (abscissa) vs. %B;  - (1 + B/A) = -3.00 for %A (abscissa) 

vs. %C;  and - (1 + A/B) = -1.50 for %B (abscissa) vs. %C. For all 

associations shown in Fig. 9, we found rho = + 1.000, p<0.01, n = 200. 

Additionally, we did not find any change in equations of the linear 

associations shown in Fig. 9 (not shown). 

 

 
Figure 9:  Scatterplots of associations between A (B, C) percentages, with reference to the equation S = A + B + C, see text. Upper panels: A = 1; 

B=2; C 1 - 100. Lower panels: A = 1; B=2; C 1 - 1.01. For all associations, rho = + 1.000, p<0.01, n = 200. In upper and lower panels; slope of %A 

vs. %B = 2; %A vs. %C: - 3; %B vs %C - 1.5. Note scale differences in upper and lower panels. 
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When inspecting closely the scatterplots in Fig. 9, we see that there is a 

difference between the upper and lower panels. In the upper panels, the 

points do not have an equal distribution on the lines; i.e. for %A vs. %B, 

the points assemble towards the lowest values. Furthermore, for %A vs. 

%C (%B vs. %C) the point density is highest at low values of %A (%B), 

corresponding to high %C values.  In contrast to this picture, in the lower 

panels, there seems to be an equal point distribution on the regression 

lines.  

 
Figure 10:  Histograms of %A, %B, and %C, with reference to the equation S = A + B + C, see text. A = 1; B=2; C 1 - 100. Skewness 2.63 for %A 

and %B; -2.63 for %C. 

With broad C-range (1 - 100), the difference in frequency distribution of 

the points (“cases”) is caused by high positive skewness of %A and %B 

(skewness 2.63 for both), and high negative skewness (-2.63) of the %C 

distribution (Fig. 10), SE of skewness was 0.17 for all.   

When narrowing the C-range, the %A, %B, and %C histograms 

approached normal distributions, i.e. skewness of the  %A, %B, and %C 

distributions were -0.18, -0.18, and 0.18 (SE 0.17 for all), respectively 

(histograms not shown). We previously discussed how ranges relate to 

skewness [22]. 

In brief, the slope estimates found above seem to apply also if ranges of 

A and B are somewhat broadened.  However, an extensive broadening of 

the A (B) ranges would strongly violate the requirement of having near - 

to - constant values of these variables. Accordingly, the scatterplots - and 

correlation coefficients - should then be poor, and the suggested slope 

estimates would not work properly. However, the association pattern 

prevailed in spite of making major increases in the ranges of A and B.  

With the purpose of the present work, these analyses seem to support the 

view that relative amounts of eicosanoid (docosanoid) precursor fatty 

acids become positively associated in chicken muscle, because of their 

narrow ranges as compared with range of the predominant  fatty acids, 

and accordingly with range of the sum of all fatty acids. 

Thus, if all of the three variables are close to be fixed numbers, then 

closeness to be fixed numbers appears to govern the correlation outcome, 

i.e. relative amounts of the “closest – to – constant variables” should relate 

positively.  

From this general reasoning, we might suggest this rule: With three 

positive scale variables (A, B, C), where %A + %B + %C = 100, and 

ranges of A and B approach fixed numbers, we should expect %A to 

correlate positively with %B, and %A (%B) should relate negatively to 

%C. 

Computer Test #1: A and B with very narrow ranges relative to C, i.e. A 

1.0 -1.1, B 3.0 - 3.3, and C 1 - 100. Here, C would be the main variable, 

and relate negatively to %A (%B), but positively to %C. Accordingly, we 

should expect a positive %A vs. %B association, and negative %A %B) 

vs %C associations. The outcome was as expected (Fig 11).

 
Figure 11:  Relationship between C and A (B, C) percentages of S (upper panels), and between %A , %B, and %C (lower panels). The figure relates 

to the equation %A + %B + %C =100, see text. We generated uniformly distributed random numbers (n =200) with ranges A 1.0 -1.1, B 3.0 - 3.3, 

and C 1 - 100. C vs. %A (%B, %C), rho = -0.998, -0.999, 0.999); %A vs. %B rho =0.997; %C vs. %A (%B), rho = -0.998(-1.000), p<0.01 for all. 
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Due to the large difference in ranges between A (B) and C, we should 

expect large skewness of the A (B, C) percentages of S. As shown in Fig. 

11, skewness of %A, %B, and %C were 2.64, 2.69, and -2.68, respectively 

(SE 0.17 for all). Thus, %A and %B had strong positive skewness, and 

%C had strong negative skewness (Fig. 12). We previously explained 

how this skewness arises [22]. 

 
Figure 12:  Histogram of %A, %B and %C. The figure relates to the equation %A + %B + %C =100, see text. Skewness of %A, %B, and %C were 

2.64, 2.69, and -2.68, respectively (SE 0.17 for all). 

To explain associations between A (B, C) percentages of S, we previously 

[14, 15, 20, 21] utilized the equation %A + %B + %C = 100, i.e. %B = -

%A + (100 - %C). With very high %C values, as e.g. obtained when 

broadening the C - range towards higher values, this equation would 

approach %B = %A, suggesting a positive %A vs. %B association. The 

%A vs. %B association should be positive, since (100 - %C) > %A. This 

latter requirement follows the fact that the remaining value when 

calculating (100 - %C) would have to be divided between %A and %B. 

Since %A + %B = 100 - %C, (100 - %C) > %A and (100 - %C) > %B.  

Rewriting the equation to %C = -%A + (100 - %B), we see that this 

equation approaches %C = -%A + 100, due to small %B values, i.e. %C 

should relate negatively to %A. Similarly, with low %A - values we may 

also do the approximation %C = -%B + 100, showing a negative %C vs. 

%B association as well.  Quartiles of the distributions of %A, %B, and 

%C were 1.3, 2.0, 3.3; 4.0, 5.9, 10.1; 86.7, 92.1, 94.7, respectively, i.e. 

%C had high values relative to %A and %B, in support of the reasoning 

above.  

To investigate whether the above reasoning applies for widely differing 

conditions, we carried out two additional experiments. 

Computer Test #2:  A 0.10 - 0.12; B 0.20 - 0.22; C 1- 10. The correlation 

outcome was as expected, i.e. C vs. %A (%B, %C): rho = -0.991 (-0.997, 

0.997), p<0.01 for all, n =200. %A vs %B, rho = 0.989; %C vs. %A (%B), 

rho = -0.995 (-0.998), p<0.01, n =200. (Scatterplots not shown). 

Computer Test #3. A 20.0 - 20.2; B 30.0 - 30.3; C 1-10. The correlation 

outcome was C vs. %A (%B, %C), shown in Fig.13, upper panels: rho = 

-0.998 (-0.999, 1.000), p<0.01 for all, n =200. Scatterplots of associations 

between A (B, C) percentages are shown in Fig. 13, lower panels: %A vs 

%B, rho = 0.995; %C vs. %A (%B), rho = -0.998 (-0.999), p<0.01, n 

=200.  

 
Figure 13:  Relationship between C and A (B, C) percentages of S (upper panels), and between %A, %B, and %C (lower panels). The figure relates 

to the equation %A + %B + %C =100, see text. We generated uniformly distributed random numbers (n =200) with the following ranges: A 20.0 - 

20.2; B 30.0 - 30.3; C 1-10. All correlations were highly significant (rho >0.9, p<0.01). 
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The figure illustrates that the association between C and A (B, C) 

percentages of S may explain correlations between %A, %B, and %C 

(lower panels).  The points were near straight lines, because A and B had 

close to fixed numbers. Thus, for each C - value, there are few 

“disturbing” A and B numbers. In contrast to this, if we make scatterplots 

of %A (%B, %C) vs. A (B), there are many values of C for each value of 

A or B, giving very poor scatterplots. Associations between B and %A 

(%B, %C) are shown in Fig. 14. Similar poor scatterplots were obtained 

for %A (%B, %C) vs. A (not shown). 

 
Figure 14: Scatterplots of B vs. A (B, C) percentages of S. The figure relates to the equation %A + %B + %C = 100, see text. We generated 

uniformly distributed random numbers (n =200) with the following ranges: A 20.0 - 20.2; B 30.0 - 30.3; C 1-10. 

Limitations of the Study 

This work deals with computer experiments. To evaluate the suggested 

concepts of Intended Ranges and Distribution Dependent Correlations, 

we need diet trials in various species, including man.   

Conclusions 

The present study explains in more detail the strong correlations between 

eicosanoid (docosanoid) precursor fatty acid percentages in chicken 

muscle. In particular, our results explain why the associations should be 

positive and linear. Thus, if A, as well as B represent two of the precursor 

fatty acids, and C the remaining ones, we have A + B + C = S. Then, slope 

of %A (abscissa) vs. %B would approach B/A. Furthermore, slope of %A 

(abscissa) vs. %C would be near –(1+B/A), and slope of %B (abscissa) 

vs. %C would be close to   –(1+A/B).   

The study supports the idea that Intended Ranges could make Distribution 

Dependent Correlations, mathematically. We suggest that such ranges 

might have arisen through evolutionary selection. Possibly, eicosanoid 

and docosanoid precursor fatty acids in chicken breast muscle are 

examples of intended ranges, which would make their relative amounts 

correlate positively.  
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