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Introduction 

The discontinuity of a tangential velocity in an incompressible fluid is well 

known as the Kelvin Helmholtz instability. The flow is necessarily 

unstable, regardless of the velocity difference [1, 2]. However, a surprising 

results was shown by Landau [3] that the compressibility can suppress the 

KHI. The flow is stable for a large velocity difference. A mathematical 

analogy of sound waves in a compressible fluid and gravity waves in a 

shallow water flow was also mentioned (see p. 322 [3]). However, the flow 

of a compressible fluid is stable for only two-dimensional (2D) flow but 

always unstable for three-dimensional flow [4]. Cairns [5] showed that the 

physical mechanism for instability lies in the fact that the wave on the 

interface has a negative energy. The unstable region is produced by a 

coalescence of positive and negative energy modes. Miles [6] and Ribner 

[7] were the first study of over-reflexion problem related to the 

transmission and reflexion of a sound waves at a vortex sheet separating 

by two regions of constant horizontal velocity U1 and U2. This problem was 

extended by Fejer [8] by including the effects of hydromagnetic, then 

McKenzie [9] included the effects due to buoyancy. The similar stability 

of tangential-velocity discontinuity in a shallow water in 2D was given by 

Bedenzkov and Pogutse [10] since a shallow water flow has an analogy 

with a compressible gas flow in 2D. The horizontal length scale is assumed 

much greater than the vertical length scale. The analogy of stability theory 

of compressible fluids with that of shallow water is limited to two 

dimensions because the hydrostatic balance is employed in the vertical 

direction and that we have to consider perturbations, with wavelength 

, where H is the depth of the fluid layer, depending only on the 

coordinates of the horizontal plane of the liquid layer (not on the depth 

coordinate z) [11, 12]. The interface between two regions of fluid is 

stabilised if the velocity difference U is equal or greater than √8 

times to the velocity of gravity waves c = √gH [13, 14], with g being the 

gravity acceleration and H being the depth of water. However, Bedenzkov 

and Pogutse considered the linear stability of discontinuity surface by 

ignoring the higher-order of dissipative gravity waves. 

In this paper, we consider the nonlinear stability of a tangential-velocity 

discontinuity by using the Green-Naghdi equations (GN). The GN describe 

the wave propagation of fully nonlinear and weakly dispersive gravity 

waves on the fluid of finite depth. The GN are derived by using shallow 

water scaling asymptotics for a domain of small aspect ratio, however there 

is no restriction placed on the Froude number [15, 16, 17]. The 

consideration of nonlinear wave plays a vital role in predicting the shape 

of wave such as tsunami and tides [18]. We obtain the dispersion relation 

of wave frequency and other characteristics by enforcing boundary 

conditions at the interface of tangential-velocity discontinuity. The stability 

characteristic of an interface is reduced by solving the dispersion equation. 

Five roots of complex frequency ω are gained as a functions of the velocity 

discontinuity U, the traveling speed c and the order of qH with H being the 

depth of water and q being the wavenumber in the direction x of wave 

propagation. The resulting dispersion relation is calculated analytically and 

compared with that used the Sturm´s theory to find the number of real roots 

of a polynomial equation [19, 20]. Sec. 2 shows the formulation of the 

problem and the dispersion equation. In Sec. 3, we go into the stability 

characteristic by both solving the dispersion equation analytically and 

using the Sturm´s theory. A summary and conclusions is presented in the 

last section (Sec. 4). 

 

Formulations and Dispersion Relation 

 
We consider two-region flow which is moving in the region y > 0 and is at 

rest for y < 0, as shown in Figure 1. We consider only the discontinuity of 

tangential velocity in the direction x of wave propagation, the normal 
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velocity in the y direction is still continuous for entirely region. We 

consider small perturbation (proportional to ei(qx−ωt)) over the surface of 

discontinuity, suppose that 

 

 
u(x,y,z,t) = U0+u˜(x,y,z,t), v(x,y,z,t) = v˜(x,y,z,t), h(x,y,t) = H+u˜(x,y,t), 
(1) 

Where 

 

  (2) 

By ignoring the higher order items, the irrotational Green-Naghdi 
equations are written as 

 

 

 

 

 

 

 

 
, (3) 

 

In which, D/Dt = ∂/∂t + U0∂/∂x. 

 
 

 

Figure 1: The top view of the interface of the tangential-velocity 

discontinuity in a shallow water flow. In region I (y > 0), the fluid is 

moving with uniform velocity U but is at rest in region II (y < 0). The 

surface of discontinuity in tangential velocity is horizontally perturbed to 

y         =         ζ(x,t)         with         an         infinitesimal         amplitude. 

By taking derivative of two last equations on x, y respectively and then 

substituting into the first one, we obtain easily 

 

 

 

. (4) 

 
We seek solution in the form ei(qx−ωt) eκy, where κ = −κ1 for y > 0 and κ = κ2 

for y < 0. In region I (y > 0) with U0 = U, therefore we have the relation 
between wavenumber κ1 and other quantities as follows 

 

 
Similarly, in region II (y < 0) with U0 = 0, we have 

 

. (6) 

The kinematic boundary condition is 
 

  (7) 

Where ζ(x,t) = aei(qx−ωt) is the position of the discontinuity surface, with a 
is small constant. 

The normal component of the velocity are equal on both sides of the 
interface and equal to the movement of the surface in that direction. Thus, 
this gives 

v˜1 = v˜2 at y = ζ(x,t) ≈ 0. (8) 

The pressure p should be continuous at the tangential discontinuity. In the 
hydrostatic approximation p = −ρgh˜, the condition of pressure is reduced 
to that of the wave depth on both sides of the interface: 

 
h˜

1 = h˜
2 at y = ζ(x,t) ≈ 0. (9) 

The horizontal displacement ζ of the interface is connected with the vertical 

one h˜, thus we obtain 

. (10) 

Combination of (5), (6) and (10), we reduce the dispersion relation between 

the wave frequency ω and other quantities as follows 
 

 
 

The first factor gives one real root  which does not contribute 

to the instability of the interface. Thus, we do not consider this root longer. 

The instability now is considered simply from the contribution of the 

second factor as 

. (12) 

Stability Analyze of an Interface 

Analytical Solution 

The interface is stabilized if and only if the dispersion equation (12) has 

only real roots, since it is a quartic polynomial of with real coefficients of 

argument ω. We introduce new variable as follows 

, (13) 

The dispersion equation (12) then turns to 

 

Equation (14) gives four analytical solutions as follow 
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The stabilized condition reduces to 

 
 

Where M = U/c defines the Froude number, then we have 

 

 

 
(15) 

 

 

(16) 

, (17) 

Therefore, the interface is stabilised if and only if 

. This critical value of Froude number to 

make the interface stabilised is smaller than the one √8 given by 

Landau [3] and the others [4, 10]. 

Figure 2 displays the imaginary and real part roots given in (15) for a given 

qH = 1. The imaginary part of roots Ω±, − tend to zero at the Froude number 

M = √24/5 ≈ 2.19089 < 2.822 ≈ √8 and then vanish for greater 

values of the Froude number. Two other roots Ω±, + are always real for any 

positive Froude number, i. e. the imaginary parts Im[Ω±,+] = 0. Therefore, 

the flow is stable if and only if the Froude number M is equal or greater 

than √24/5; otherwise unstable. 

 

 

 

Im(Ω+,-) 

 

Re(Ω+,-) 

 
Im(Ω-,-) 

 
Re(Ω-,-) 

Re(Ω+,+) 

Re(Ω-,+) 

 

 

 

Froude number M 
Figure 2: The imaginary and real parts of root Ω in equation (15) for a given qH = 1. Since two roots Ω±,+ are always real, their imaginary parts are zero. 

 

By using the Sturm’s Theorem . 

Next, we go to find the condition of the dispersion equation (12) to have 

all real roots by using the Sturm’s Theorem (see appendix B) since the flow 

is stable if and only if (12) has only real roots. The Sturm’s sequences are 

constructed as following: 

 

 

 

 

(19) 
 

 

 

, 

p2 (ω) = − remainder (p0, p1), (18) 
p3 (ω) = −remainder (p1, p2), 

p4 (ω) = −remainder ( 

, 

Here remainder (pj, pj+1) is the remainder of the devision of polynomial pj 

to pj+1 for j = 1 ,..., 3. All roots are real if and only if all highest coefficients 

of pi (ω), i = 0,...,4 must have same signs. After simple calculation, we find 

the highest coefficients of p0 (ω), p1 (ω), p2 (ω), p3 (ω) are always positive. 
Thus, we just need p4 (ω) positive, that is 

 

 

 
(19) 

In which M is the Froude number defined in the section 3.1. This 

result coincides with that given in (17). In other words, we found that the 

critical value of the Froude number M to make the interface stabilised is 

√8(1+   which is smaller than that one √8 given by 

others. 

Conclusion 

We have considered the nonlinear stability of the Kelvin-Helmholtz 

instability in a shallow water flow by using the Green-Naghdi equations. 

The stability characteristic of the interface obtains by analysing the 

dispersion relation of wave frequency and others. The analytical solution 

is compared with that used the Sturm’s theory. We obtain a coincidence of 

two these methods and show that the flow is stable with an amount of 

velocity discontinuity smaller than that given by previous researches [3, 4, 

10]. 
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The stability condition of flow depends on both the strength of velocity 

difference and the depth of considered region. For a given velocity 

difference, the flow is more stable in deeper regions and is less stable in 

shallower regions. This work was done at Nuremberg Campus of 

Technology of Technische Hochschule Nu¨rnberg Georg Simon Ohm. The 

author would like to thank to Prof. Frank Ebinger and Department for 

supporting this research. 

 

 

 

 

Then we can derive the irrotational Green-Naghdi equations [17] 

A The irrotational Green-Naghdi equations 

The Green Naghdi equations (GN) is the fully nonlinear shallow-water 

waves whose amplitude is not necessarily small and represents a higher- 

order correction to the classical shallow-water equations. In shallow-water 

approximation, the velocity field of three dimensional long wavelength 

propagation can approximate over the depth as follows [17] 

 

 

 

(20) 

 

(21) 

 

Where ∇ = (∂/∂x, ∂/∂y) is horizontal gradient; γ = 

(∇·u¯)2−∇·u¯t−u¯·∇[∇·u¯] is the vertical acceleration at the free surface 
and can be derived as 

. (22) 

B Sturm’s theorem 

Here we introduce the Sturm’s theorem [19, 20] which expresses the 

number of distinct real roots of a univariate polynomial p located in an 

interval in terms of the number of changes of signs of the values of the 

Sturm’s sequence at the bounds of the interval. Applied to the interval of 

all the real numbers, it gives the total number of real roots of p. The Sturm 

sequence is a finite sequence of polynomials, applying Euclid’s algorithm 

to p and its derivative: 

 
 

, 
p2(x) = −remainder(p0,p1), 

p3(x) = −remainder(p1,p2), 

: 

: 

pm = −remainder(pm−2,pm−1), 

0 = −remainder (pm−1, pm). 

where remainder(pj,pj+1) is the remainder of the polynomial long division 

of pj by pj+1, and where m is the minimal number of polynomial divisions 

(never greater than deg(p)) needed to obtain a zero remainder. 

Let σ(ξ) denote the number of sign changes (ignoring zeroes) in the 

sequence p0(ξ),p1(ξ),p2(ξ),··· ,pm(ξ). 
Sturm’s theorem then states that for two real numbers a < b, the number of 
distinct real roots of p in the interval [a,b] is σ(a) − σ(b). 

Choosing a = −∞, b = ∞, then the total number of real roots of a polynomial 

is equal to σ (−∞) –σ (∞). That is to say, all roots of a polynomial of degree 

m are real, if and only if σ (−∞) – σ (∞) = m. 

As 0 ≤ σ (−∞) ≤ m, 0 ≤ σ (∞) ≤ m, so σ (−∞) = m,σ(∞) = 0. 

Since the sign of a polynomial is decided by the term with highest degree 

as x → ±∞. Thus all highest coefficients of the polynomials in the Sturm 

sequence must have the same signs (all positive or all negative). 

In conclusion, we have the following Lemma: Suppose p(x) is a univariate 

polynomial with real coefficients, m is the highest degree of p(x). p0 (ξ), p1 

(ξ), p2 (ξ),··· ,pm(ξ) is the Sturm sequence of p(x). If all highest coefficients 

of pi(x),i = 0,1,··· ,m have the same signs (all positive or all negative), then 

all roots of the polynomial p(x) are real. 

References 

1. Helmholtz, H.V (1868) Uber discontinuierliche Flu¨ssigkeits- 

Bewegungen [On¨ the discontinuous movements of fluids]. 

Monatsberichte der Ko¨niglichen Preussische Akademie der 

Wissenschaften zu Berlin. 23: 215–228. 

 

2. Lamb, H (1993) Hydrodynamics, 6th Edition. Cambridge 

University Press, Cambridge. 

 

3. Landau, L.D (1987) Lifshitz, E.M., Fluid Mechanics, 2nd Edition: 

Volume 6 Course of Theoretical Physics. Publisher: Butterworth- 

Heinemann 

 

4. Syrovatskii, S.I (1954) Instability of a tangential discontinuity in a 

compressible medium. Zhur. Eksp. Teor. Fiz., 27(1): 121–123. 

 

5. Cairns, R.A (1979) the role of negative energy waves in some 

instabilities of parallel flows. J. Fluid Mech., 92(1): 1–14, 

 

6. J. W. Miles (1957) on the reflection of sound at an interface of 

relative motion, J. Acoust. Soc. Am. 29 (2), 226–228. 

 

7. H. S. Ribner (1957) Reflection, transmission, and amplification of 

sound by a moving medium. J. Acoust. Soc. Am. 29 (4), 435-441. 

 
8. J. A. Fejer (1963) Hydromagnetic reflection and refraction at a fluid 

velocity discontinuity, The Physics of Fluids 7, 499–503. 

 

9. I. A. Eltayeb and J. F. McKenzie (1975) Critical-level behaviour and 

wave amplification of a gravity wve incident upon a shear layer, J. 

Fluid Mech. 72, 661–671. 

 

10. S. V. Bezdenkov and O. P. Pogutse (1983) Supersonic stabilization 

of a tangential shear in a thin atmosphere. Pis’ma Zh. Eksp. Teor. 

Fiz., 37:317?319. 

 

11. Bridges, T.J, Needham, D.J (2011) Breakdown of the shallow water 

equations due to growth of the horizontal vorticity. J. Fluid Mech., 

679: 655–666, 

 

12. Johnson, R.S (1997) A modern introduction to the mathematical 

theory of water waves. Cambridge University Press. 

 

13. Stoker, J.J (1958) Water waves: the mathematical theory with 

applications. Jone Wiley and Sons. 

https://www.auctoresonline.org/journals/nutrition-and-food-processing
http://www.auctoresonline.org/
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/role-of-negative-energy-waves-in-some-instabilities-of-parallel-flows/7CAC2E6AB688F35EAA927AE885533250
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/role-of-negative-energy-waves-in-some-instabilities-of-parallel-flows/7CAC2E6AB688F35EAA927AE885533250
https://asa.scitation.org/doi/abs/10.1121/1.1908836
https://asa.scitation.org/doi/abs/10.1121/1.1908836
https://asa.scitation.org/doi/abs/10.1121/1.1908918
https://asa.scitation.org/doi/abs/10.1121/1.1908918
https://aip.scitation.org/doi/abs/10.1063/1.1706765
https://aip.scitation.org/doi/abs/10.1063/1.1706765
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/criticallevel-behaviour-and-wave-amplification-of-a-gravity-wave-incident-upon-a-shear-layer/208FBCA683F521225B695ADE2764D129
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/criticallevel-behaviour-and-wave-amplification-of-a-gravity-wave-incident-upon-a-shear-layer/208FBCA683F521225B695ADE2764D129
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/criticallevel-behaviour-and-wave-amplification-of-a-gravity-wave-incident-upon-a-shear-layer/208FBCA683F521225B695ADE2764D129
https://ui.adsabs.harvard.edu/abs/1983ZhPmR..37..317B/abstract
https://ui.adsabs.harvard.edu/abs/1983ZhPmR..37..317B/abstract
https://ui.adsabs.harvard.edu/abs/1983ZhPmR..37..317B/abstract
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/breakdown-of-the-shallow-water-equations-due-to-growth-of-the-horizontal-vorticity/07285F2F31428510C8A8232C58E36846
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/breakdown-of-the-shallow-water-equations-due-to-growth-of-the-horizontal-vorticity/07285F2F31428510C8A8232C58E36846
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/breakdown-of-the-shallow-water-equations-due-to-growth-of-the-horizontal-vorticity/07285F2F31428510C8A8232C58E36846
https://books.google.co.in/books?hl=en&lr&id=oQ2Cw4Rnve8C&oi=fnd&pg=PR11&dq=12.%09Johnson%2C%2BR.S%2B(1997)%2BA%2Bmodern%2Bintroduction%2Bto%2Bthe%2Bmathematical%2Btheory%2Bof%2Bwater%2Bwaves.%2BCambridge%2BUniversity%2BPress.%2B&ots=VbT9xtNlF2&sig=Xv5ByRiecncQzdg9aC5xsA0qsqM&redir_esc=y%23v%3Donepage&q=12.%09Johnson%2C%20R.S%20(1997)%20A%20modern%20introduction%20to%20the%20mathematical%20theory%20of%20water%20waves.%20Cambridge%20University%20Press.&f=false
https://books.google.co.in/books?hl=en&lr&id=oQ2Cw4Rnve8C&oi=fnd&pg=PR11&dq=12.%09Johnson%2C%2BR.S%2B(1997)%2BA%2Bmodern%2Bintroduction%2Bto%2Bthe%2Bmathematical%2Btheory%2Bof%2Bwater%2Bwaves.%2BCambridge%2BUniversity%2BPress.%2B&ots=VbT9xtNlF2&sig=Xv5ByRiecncQzdg9aC5xsA0qsqM&redir_esc=y%23v%3Donepage&q=12.%09Johnson%2C%20R.S%20(1997)%20A%20modern%20introduction%20to%20the%20mathematical%20theory%20of%20water%20waves.%20Cambridge%20University%20Press.&f=false
https://books.google.co.in/books?hl=en&lr&id=9CSOiCmZXKAC&oi=fnd&pg=PR23&dq=13.%09Stoker%2C%2BJ.J%2B(1958)%2BWater%2Bwaves%3A%2Bthe%2Bmathematical%2Btheory%2Bwith%2Bapplications.%2BJone%2BWiley%2Band%2BSons.%2B&ots=e-ACqJ1lOF&sig=E7N4BuXCwMZYm0ccqE_QZ4gblf0&redir_esc=y%23v%3Donepage&q&f=false
https://books.google.co.in/books?hl=en&lr&id=9CSOiCmZXKAC&oi=fnd&pg=PR23&dq=13.%09Stoker%2C%2BJ.J%2B(1958)%2BWater%2Bwaves%3A%2Bthe%2Bmathematical%2Btheory%2Bwith%2Bapplications.%2BJone%2BWiley%2Band%2BSons.%2B&ots=e-ACqJ1lOF&sig=E7N4BuXCwMZYm0ccqE_QZ4gblf0&redir_esc=y%23v%3Donepage&q&f=false


  J Mathematical Methods in Engineering 

 Auctores Publishing – Volume 2(1)-002 www.auctoresonline.org  Page - 5 

 

 

14. Whitham, G.B (1974) Linear and Nonlinear Waves. Wiley- 

Interscience, New York. 

 

15. Camassa, R, Falqui, G, Ortenzi, G, Two-layer interfacial flows 

beyond the Boussinesq approximation: a Hamiltonian approach. 

Nonliearity, 30: 466-491, 

 

16. Camassa and D. D. Holm (1992) Dispersive baratropic equations for 

stratified mesoscale ocean dynamics. Comm. Physica D, 60, 1-15. 

 

17. Clamond, D. Dutykh, D, Mitsotakis, D (2017) Conservative 

modified Serre-Green-Naghdi equations with improved dispersion 

characteristics. Comm. Nonlin. Sci. Numer. Simul., 45: 245–257. 

18. 

Thi Thai Le (2016) Dang Hieu Phung, and Van Cuc Tran. Numerical 

simulation of tidal flow in danang bay based on non-hydrostatic 

shallow water equations. Pacific Journal of Mathematics for 

Industry, 8(1):1. 

 

19. D¨orrie, H (1965) Sturm’s Problem of the Number of Roots. Article 

24 in 100 Great Problems of Elementary Mathematics: Their History 

and Solutions. New York: Dover, pp. 112-116. 

 

20. Sturm’s Theorem. https : //en.wikipedia.org/wiki/Sturm0s theorem. 

https://www.auctoresonline.org/journals/nutrition-and-food-processing
http://www.auctoresonline.org/
https://iopscience.iop.org/article/10.1088/1361-6544/aa4ff7/pdf
https://iopscience.iop.org/article/10.1088/1361-6544/aa4ff7/pdf
https://iopscience.iop.org/article/10.1088/1361-6544/aa4ff7/pdf
https://www.sciencedirect.com/science/article/abs/pii/016727899290223A
https://www.sciencedirect.com/science/article/abs/pii/016727899290223A
https://www.sciencedirect.com/science/article/pii/S1007570416303471
https://www.sciencedirect.com/science/article/pii/S1007570416303471
https://www.sciencedirect.com/science/article/pii/S1007570416303471
https://pacific-mathforindustry.springeropen.com/articles/10.1186/s40736-015-0020-6
https://pacific-mathforindustry.springeropen.com/articles/10.1186/s40736-015-0020-6
https://pacific-mathforindustry.springeropen.com/articles/10.1186/s40736-015-0020-6
https://pacific-mathforindustry.springeropen.com/articles/10.1186/s40736-015-0020-6
https://pacific-mathforindustry.springeropen.com/articles/10.1186/s40736-015-0020-6

