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Abstract 

Asthma is a common chronic airway disease affecting about 358 million people worldwide, and an estimated 7 million 

children globally. Approximately 10% of patients with asthma have severe refractory disease, which is difficult to control 

on high doses of inhaled corticosteroids and other modifiers. Among these, are patients with severe neutrophilic asthma. 

Neutrophilic asthma is a severe phenotype of asthma, characterized by frequent exacerbations, persistent airway obstruction, 

and poor lung function. Immunopathologically, it is characterized by the presence of high levels of neutrophils in the airways 

and lungs. Interleukin-17 produced by Th17 cells, plays a key role in the pathogenesis of neutrophilic asthma by expressing 

the secretion of chemoattractant cytokines and chemokines for the recruitment, and activation of neutrophils. Interleukin-8 

is a powerful chemoattractant and activator of neutrophils. Activated neutrophils produce an oxidative burst, releasing 

multiple reactive oxygen species, proteinases, cytokines, which cause airway epithelial cell injury, inflammation, airway 

hyperresponsiveness, and remodeling. Furthermore, exasperated neutrophils due to viral, bacterial or fungal infections, and 

chemical irritants can release extracellular nucleic acids (DNA), designated as NETs (neutrophil extracellular traps), which 

are more toxic to the airway epithelial cells, and orchestrate airway inflammation, and release alarmin cytokines. 

Dysregulated NETs formation is associated with severe asthma. Most patients with neutrophilic asthma are unresponsive to 

the standard of care, including high dose inhaled corticosteroids, and to targeted biologics, such as mepolizumab, and 

dupilumab, which are very effective in treating eosinophilic asthma. There is unmet need to explore for novel biologics for 

the treatment of neutrophilic asthma, and in refining therapies, such as bronchial thermoplasty. 
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Introduction  

Asthma is a significant public health problem, affecting more than 358 

million people worldwide [1], and its prevalence has been increasing 

during the last 40 years [2,3]. It is the most common childhood chronic 

respiratory disease affecting about 7 million children [4].  

Asthma is a complex heterogenous chronic airway disease with several 

distinct phenotypes characterized by different immunopathological 

pathways, clinical presentation, physiology, comorbidities, biomarker of 

allergic inflammation, and response to treatment. It has now become 

clinical practice to phenotype asthma for precision and targeted treatment, 

because asthmatic patients respond to the standard of care (SoC) treatment 

differently [5,6].  

Asthma is classified into four distinct phenotypes based on quantitative 

induced sputum cytology [7-9]. The four phenotypes of asthma include 

eosinophilic asthma, neutrophilic asthma, paucigranulocytic asthma, and 

mixed cellularity asthma [9,10]. Patients with eosinophilic asthma have 

an eosinophil count of 2% to 3% [11-13], whereas patients with 

neutrophilic asthma have elevated sputum neutrophil count between 

≥61% [11] and ≥65% [12-14], depending on the study. Mixed cellularity 

phenotype is characterized by increase in both eosinophils (>3%), and 

neutrophils (>61% or ≥65%) [14-16]. Paucigranuocytic phenotype 

embraces patients with very low eosinophil numbers (<3%), and low 

neutrophils count (<61% or <65%) in induced sputum [14,17]. Non-

eosinophilic asthma is the term designated to classify patients with low 

eosinophil counts (<3%), which include neutrophilic asthma, and 

paucigranulocytic phenotype [17,18]. Asthma can also be classified as 

type 2-high and type 2-low, depending on biomarkers of eosinophilic 

inflammation, and instigating cytokines. Type 2-high is associated with 

eosinophilic Th2-driven asthma, whereas type 2-low represents non-

eosinophilic asthma [15,19]. 

The pathogenesis of neutrophilic asthma is multifaceted and is not fully 

understood; however, approximately 30%-50% of the patients with 

symptomatic asthma have the neutrophilic phenotype [5]. Neutrophilic 

asthma is characterized by very severe refractory disease [20-24], and 

persistent airway obstruction [8,25-27], frequent exacerbations, 

hospitalizations, emergency room visits [20], and status astmaticus [21]. 

Furthermore patients with neutrophilic asthma have poor response to SoC 
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treatment, such as inhaled corticosteroids (ICSs), long-acting β2-agonists 

(LABA), and leukotriene receptor antagonists (LTRA) [28-33]. 

Furthermore, neutrophilic asthma is frequently associated with steroid-

resistant asthma. Several cytokines incriminated in the pathogenesis of 

neutrophilic asthma, such as interleukin-17 (IL-17) [32,34], IL-8 [35], and 

tumour necrosis factor-α (TNF-α) [36] play an important role in the 

induction of steroid resistance. 

Interleukin-17 plays a key role in the pathogenesis of neutrophilic asthma, 

by expressing the induction of cytokines, chemokines, and adhesion 

molecules which are responsible for the recruitment, and activation of 

neutrophils. Interleukin 8 is a very potent chemoattractant and activator 

of neutrophils, signaling via its receptors, CXCR1, and CXCR2. 

Activated neutrophils degranulate and secrete reactive oxygen species 

(ROS), proteases, matrix metalloproteinases, metaloperoxidases, and 

cytokines, which cause epithelial cells injury, inflammation, and airway 

hyperresponsiveness (AHR). Airway epithelial injury, and dysfunction 

release alarmin cytokines, such as IL-25, IL-33, and thymic stromal 

lymphopoietin (TSLP); and chemokines, which further orchestrates 

airway inflammation, AHR, and airway remodeling. 

Airway remodeling in asthma is a complex progressive process involving 

structural changes, leading to airway narrowing, increased airflow 

resistance, and severe asthma. Airway remodeling includes epithelial-

mesenchymal transition (EMT), fibroblast and myofibloblast 

proliferation, deposition of extracellular matrix protein, subepithelial 

fibrosis, goblet cells metaplasia, airway smooth muscle (ASM) cells 

hyperplasia and hypertrophy, and angiogenesis [37]. Such structural 

changes require innovative therapies such as bronchial thermoplasty to 

trim the hypertrophied ASM mass, and subepithelial fibrosis.  

Neutrophils in Neutrophilic Asthma 

Neutrophils are polymorphonuclear leukocytes that have a fundamental 

role to play in innate immune response [38,39]. Neutrophils act as the first 

line of defense against pathogens, such as bacteria, fungi and perhaps 

viruses, and participate in the resolution of inflammation [40]. However, 

neutrophils also contribute to immunopathology of many diseases, 

including respiratory diseases, such as cystic fibrosis, bronchiectasis, 

acute respiratory distress syndrome (ARDS), chronic obstructive 

pulmonary disease (COPD), and neutrophilic asthma [38,41].  

Activated neutrophils produce an NADPH oxidative burst, releasing 

multiple reactive oxygen species, proteases, matrix metalloproteases, 

myeloperoxidases, cytokines, chemokines, and lipid mediators which 

lead to airway inflammation, AHR, and airway remodeling. Additionally, 

the inflammatory mediators are responsible for airway epithelial injury, 

which result in the release of alarmin cytokines by epithelial cells; and 

mucus hypersecretion [41]. The chemoattractant mediators, such as 

CXCL1, CXCL6, CXCL8 (IL-8), LTB4, PAF, and thromboxanes further 

enhances neutrophil recruitment, migration and activation, thus 

amplifying the neutrophilic airway inflammation [42].  

Neutrophils produce reactive oxygen species (ROS), such as superoxide 

anion (superoxide radical O2-), hydrogen peroxide (H2O2), and 

Hypochlorous acid (HOCl), which lead to an increase in transcription of 

IL-8 by epithelial cells, further propagating the chemoattractant 

neutrophilic response [43,44]. Additionally, ROS synergize with 

neutrophil proteases to cause severe tissue damage by inactivating the 

actions of antiproteases [44].  

Several studies have reported increased concentrations of neutrophil 

active mediators, such as IL-8, neutrophil elastase, matrix 

metalloproteinase-9 (MMP-9), leukotriene B4 (LTB4), IL-17A, GM-

CSF, and TNF-α in plasma, BAL fluid, and bronchial epithelial-

conditioned media derived from patients with severe neutrophilic asthma 

[45-49]. Grunell et al. [49] have demonstrated that children with 

neutrophil-predominant asthma have proinflammatory neutrophils with 

enhanced survival. The BAL fluid from these children demonstrates 

quantitatively increased levels of cytokines (IL-1β, IL-6, IL-8); 

chemokines (CXCL2, CXCL3, and CXCL4); myeloperoxidase; and 

neutrophil elastase.  

The most important proteases secreted by neutrophils during neutrophilic 

airway inflammation include neutrophil elastase, cathepsin G, and 

metalloproteases (MMP), especially MMP-9.  

Metalloproteases 

Metalloprotease-9 is one of the most studies inflammatory mediators in 

asthma. Elevated levels of MMP-9 have been found in sputum and BAL 

fluid from patients with asthma, and the levels correlated with neutrophil 

numbers [50], and the severity of asthma [51]. Wenzel et al, [52] have 

suggested that localized tissue MMP-9 deposition in the lungs may lead 

to subepithelial basement membrane thickening, fixed airflow 

obstruction, and severe asthma. 

Neutrophil Elastase 

Neutrophil elastase is one of the most cytotoxic proteins produced by 

activated neutrophils form the primary granules. It has been implicated in 

all the pathophysiological aspects of severe neutrophilic asthma. The 

immunopathological roles of elastase include airway epithelial injury, 

increased vascular permeability, hyperplasia of bronchial submucosal 

glands and mucus hypersecretion, bronchoconstriction, and airway 

hyperresponsiveness [53]. Neutrophil elastase can induce goblet cell 

metaplasia, mucus secretion a hallmark of severe asthma [54]. It can also 

induce airway smooth muscle proliferation [55], and has been implicated 

in airway remodeling, leading to severe airway narrowing, and 

progressive decline in lung function [56]. 

Neutrophil proteases, such as elastase, cathepsin G, and proteanase-3 may 

induce airway inflammation through activation of eosinophils to produce 

cytotoxic cationic proteins, ROS, lipid mediators, cytokines, and 

chemokines [57], thus aggravating neutrophilic asthma [58]. Thus, during 

neutrophilic asthma, there is collaborative cross-talk between neutrophils 

and eosinophils, leading to severe neutrophilic airway inflammation. 

Neutrophil elastase levels have been reported to be elevated in bronchial 

secretions, and in induced sputum in asthmatic patients compared to 

healthy controls, especially during exacerbations [59,60]. 

Myeloperoxidase  

Myeloperoxidase (MPO) released from neutrophil primary granules can 

react with hydrogen peroxide generated during a respiratory burst, and 

produce hypochlorous acid, and other reactive oxygen species [60]. The 

ROS are crucial for microbial activity and antigen presentation, but play 

deleterious role in causing injury to lung tissue during neutrophilic 

inflammatory process [1]. MPO levels have been shown to be elevated in 

the BAL fluid of patients with asthma compared to normal subjects [60] 

Lipid Mediators 

Neutrophils can synthesize lipid mediators such as and leukotrienes 

(LTB4) and platelet activating factor (PAF). They are also able to produce 

prostaglandins (PGE2) and thomboxanes (TBXA2) via cyclooxygenase 
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enzyme systems [61,62]. Lipid mediators play an important role in 

neutrophil migration, and activation in the airway inflammation process. 

Reactive Oxygen Species 

Activated neutrophils are the major source of reactive oxygen species 

(ROS), such as hydrogen peroxide, hypochlorous acid, and superoxide 

radical (O2-) in allergic inflammation. ROS act synergistically with 

neutrophil proteases to cause lung tissue damage, submucosal glands 

hyperplasia and mucus secretion, and airway hyperreactivity [56,63,64]. 

In vitro stimulation of neutrophils from atopic asthmatic patients with 

inophore A2318, and the chemoattractant fMLP have been shown to 

produce higher level of ROS compared to non-atopic subjects [65,66]. 

Tanazawa et al. [66] have reported that the production of free oxygen 

radicals was inversely proportional to measures of airway obstruction, 

e.g., FEV1. Furthermore, higher levels of O2- have been reported during 

asthma attacks and exacerbations compared to levels in stable asthma 

[64]. Thus implicating ROS in the pathogenesis of severe neutrophilic 

asthma, and in promoting exacerbations. Loukides and colleagues have 

reported an increase in hydrogen peroxide in expired breath condensate 

from patients with asthma, which correlated with airway inflammation, 

and asthma severity [67].  

Table 1 shows neutrophil-derived antimicrobials and inflammatory 

mediators, including cytoplasts, and Table 2 lists mediators associated 

with neutrophilic airway inflammation. 

Neutrophil Extracellular Traps 

Neutrophils play a sentinel role by safeguarding the host immune 

homeostasis through maintaining a strict equilibrium of the innate 

immunity, and acute inflammatory responses [68]. Neutrophils’ defense 

against invading microbes include phagocytosis, degranulation, and 

NADPH oxidative burst [69]. However, neutrophils can extrude 

cytosolic, and nuclear material via a conservative cell death process 

distinct from apoptosis and necrosis, which can be more lethal to the 

invading microbes. Chemical-induced neutrophil autotoxicity has been 

known for over 2 decades, although its clinical significance was less clear 

[70,71]. Exasperated neutrophils due to viral, bacterial or fungal 

infections, and chemical irritants can release extracellular nucleic acids 

(DNA), designated as NETS (neutrophil extracellular traps) [72]. The 

term NET was first coined by Brinkmann and colleagues in 2004, as a 

novel antimicrobial defense system [73]. NETs are web-like scaffolds of 

extracellular DNA complex with histones, and antimicrobial neutrophil 

granular proteins, such as neutrophil elastase, and myeloperoxidase. 

NETosis can generate enucluated ‘’’ghost’’ neutrophils with 

chemokinesis, termed cytoplasts which are also toxic to the airway 

epithelial cells, and exogenous bacteria [74]. Furthemore, nefarious 

neutrophil cytoplast formation in asthmatic lung inflammation is linked 

to Th17-mediated neutrophilic inflammation in severe asthma [75].   

NETosis or neutrophil suicide was first described following chemical 

stimulation with phorbol 12-myristate 13-acetate (PMA) [71]. NETosis 

was further elucidated by Takei et al. [72], who demonstrated that PMA-

induced suicide resulted in the release of a novel defense structure, named 

NET [72].  

NETs release or NETosis is an NADPH oxidative-dependent cellular 

death requiring chromatin decondensation [76]. It is an orderly suicide, 

which involves nucleus envelop fragmentation, and mixing of nucleic 

acids and granule proteins with in a large vacuole. Finally, after 

intracellular assembly NETs are release via perforations in the cell 

membrane, and cell lysis.  Once released, the DNA structures entrap both 

gram-negative and gram-positive [72,73]. This form of cell death is 

different from apoptosis, because it a novel host defense form of 

beneficial suicide [77]. Entrapment of microorganisms by NETs restrict 

potential pathogen dissemination from the initial site of infection [78]. 

Eosinophils can also undergo NETosis, but eosinophil extracellular traps 

contain significantly less proteases than neutrophil extracellular traps, and 

may therefore be very stable, and cause less tissue injury [79] 

Although NETs are considered an essential part of neutrophil-mediated 

immunity, they have also been incriminated in NET-based 

immunopathology [80,81]. NETosis may represent a “double-edged 

sword” in innate immunity [82]. Abnormal NET production in the 

circulation and tissues have been demonstrated in patients with cystic 

fibrosis, and ARDS [83-85]. These are airways diseases characterized by 

mucosal neutrophilic inflammation. Additionally, NETs can directly 

trigger epithelial cell death [86], or may impair lung epithelial barrier 

function during respiratory viral infection in vivo [87]. Furthermore, 

murine studied have shown an important role for NETs in inducing airway 

mucus hypersecretion [88]. 

Dysregulation of NETs formation may play a critical role in the 

pathogenesis of chronic airways diseases, such as chronic obstructive 

pulmonary disease (COPD) [89-92], and asthma [23]. Furthermore, 

neutrophil autophagy and extracellular DNA traps contribute to airway 

inflammation, and severe asthma [93]. Similarly, Dicker and colleagues 

have reported that NET formation in the airways of patients with COPD 

was associated with disease severity [94]. 

There is concrete evidence that respiratory virus infection (Rhinovirus) 

[95,96], bacterial infection (Staphylococcus aureus) [97], and pulmonary 

fungal infection (Aspergillus fumigatus) [98,99], can induce NETs 

production.  Furthermore, Toussaint et al. [95] have hypothesized that the 

release of NETs containing DNA may exacerbate airway inflammation, 

indicating that NETs may be responsible for severe asthma exacerbations. 

Similarly, Lachowicz-Scroggins and colleagues have shown that patients 

with severe asthma have significantly higher levels of extracellular DNA 

compared with healthy controls [100]. 

INTERLEUKIN-17 

Interleukin-17A (thereafter, synonymously called IL-17) was initially 

identified as cytotoxic T-lymphocyte-associated antigen 8 (CTLA-8) in 

1993 by Rouvier and colleagues [101]. Subsequent characterization 

revealed that IL-17 was produced by a special type of T helper cells 

known as Th17 cells, and thus renamed as IL-17 [102-104]. Latter 

genomic sequencing led to the discovery of additional IL-17 family 

members totaling six, namely IL-17A (IL-17), IL-17B, IL-17C, IL-17D, 

IL-17E (also known as IL-25), and IL-17F [105-109]. Unlike its siblings, 

IL-25 is an epithelial cell-secreted cytokine, mediating Th2 eosinophilic 

airway inflammation, via induction of Th2 cytokines, such as IL-5, IL-4, 

and IL-13 [110]. The immunology of the less tweedy, orphan cytokine 

IL-17D is poorly understood. 

IL-17 is disulfide-linked homodimeric glycoprotein consisting of 155 

amino acids with a molecular weight of 35 kDa; but heterodimers 

composed of IL-17A and IL-17F, as well as IL-17F homodimers exist 

[110,111]. IL-17A homodimer produce more pathophysiologic responses 

that the heterodimer or the IL-17F homodimer [108,111,112]. Among the 

IL-17 family members, IL-17F has the highest homology (55%) with IL-

17A [108,113], and IL-17E (IL-25), is the most knotty, divergent cytokine 

in the IL-17 family, sharing 16-20% sequence homology with its cousins 
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[108]. IL-17A and IL-17F have similar pathophysiological roles, although 

IL-17 is about 10-30 times as potent as IL-17F [11]. IL-17 is the founding 

and most studied family member [5,8], especially in the pathogenesis of 

rheumatoid arthritis [114-117], psoriasis [118-120], and currently in the 

pathogenesis of neutrophilic asthma [121,122]. 

Interleukin-17 is secreted mainly by a distinct CD4+ T helper 17 (Th17) 

cells [123-125], characterized by expression of the master transcription 

factor retinoic acid-related orphan-receptor-γt (RORγt) [126]. IL-17 is 

also secreted by other activated immune cells, such as dendritic cells, 

CD8+ T cells, δγ T cells, natural killer cells, invariant natural killer T 

cells, lymphoid tissue inducer cells, and type 3 innate lymphoid cells 

[127-132]. 

Several studies have reported increased levels of IL-17 in sputum and 

BAL fluid [133-135], and a positive correlation between IL-17 

concentration and severity of asthma [134,135]. Similarly, Bullens et al. 

[136] have shown an increase in IL-17 mRNA in sputum of asthmatic 

patients, which was linked with airway influx of granulocytes including 

neutrophils. Furthermore, increased IL-17 and IL-17F levels [137-139], 

Th17 cells [140-143], and IL-17-producing innate type 3 lymphoid cells 

(ILC3) [144], have been demonstrated to be increased in BAL fluid, lung 

biopsies, and peripheral blood in patients with severe asthma. The levels 

of these biomarkers of neutrophilic airway inflammation have been 

shown to correlate with the severity of asthma in both adults [137-

141,143,144], and children [142]. 

Interleukin-17 engenders tissue inflammation mainly by stimulating 

expression of several proinflammatory cytokine, such as IL-6, IL-8, and 

TNF-α [145,146], and chemokines, including CXCL1, CXCL2, CXCL5, 

CXCL8, and CXCL20 [145,147,148]. IL-17 also induces secretion of 

growth factors, such as G-CSF, and GM-CSF [145,149,150], which play 

very important roles in neutrophil airway immunopathology.  

Interleukin-17, Airway Hyperresponsiveness and Remodeling 

Interleukin-17 directly or indirectly contributes to airway 

hyperresponsivess, and remodeling in patients with neutrophilic asthma 

[151]. IL-17 contributes to the development of subepithelial fibrosis by 

enhancing the production of profibrotic cytokines, and activation of 

fibroblasts, which produces collagen [152-155]. Increased airway smooth 

muscle (ASM) mass is a hallmark of airway remodeling in severe asthma. 

IL-17 and the cytokines it induces, such as IL-6, IL-1β, and chemokines 

including CXCL8/IL-8, and eotaxin, promote airway smooth muscle 

(ASM) cell proliferation and migration [156-158]. IL-17 also promotes 

ASM cell survival by inhibiting apoptosis [156-158]. Blockade of IL-17 

receptors (IL-17A or IL-17C) prevents the ability of ASM cells to 

proliferate and migrate [158]. Additionally, IL-17 enhances ASM cell 

contraction. This effect is mediated by the IL-17-induced activation of the 

RhoA-ROCK pathway in ASM cells. This pathway is an important 

regulator of myosin light chain phosphorylation involved in smooth 

muscle contractility [159]. Increase in ASM cell mass and contractility 

can result into airway hyperresponsiveness, bronchoconstriction, and 

severe airflow limitation. Furthermore, IL-17 promotes angiogenesis, 

which is a hallmark of remodeling in severe asthma [160] 

Airway mucus hypersecretion and mucus plugging is one of the serious 

complication of severe neutrophilic asthma. IL-17 is a potent 

secretagogue which stimulates submucosal glands and goblet cell 

hyperplasia, and hypersecretion of mucus. Increased mucus secretion 

results from increased gene expression. It has been reported to stimulate 

MUC5A and MUC5B gene expression in monkey and mouse 

tracheobronchial epithelial cells 161,162]. Noteworthy, IL-17 contributes 

to the development of steroid-insensitive asthma [163,164]. The 

pathophysiological mechanisms for severe neutrophilic asthma are 

outlined in Table 3.   

Treatment of Severe Neutrophilic Asthma 

Most patients with stable asthma respond to treatment with standard 

therapies, such as long-acting β-agonists (LABA), low dose inhaled 

corticosteriods (ICS), and leukotriene receptor antagonists (LTRA), using 

the stepwise guidelines. However, treatment of severe neutrophilic 

asthma is challenging. Unlike eosinophilic asthma, there are no specific 

biomarkers, such as fractional exhaled nitric oxide (FeNO), periostin, and 

DDP-4 to select patients who are more likely to benefit from biologics. 

Currently, there are also no effective biologics specifically targeting 

airway neutrophilic inflammation. The approved biologics by the FDA, 

and their dosages for the treatment of eosinophilic asthma are portrayed 

in Table 4. 

Several clinical trials investigating the efficacy and safety of biologics 

targeting the incriminated cytokines and their receptors in the 

pathogenesis of neutrophilic asthma, such as IL-8 (CXCR1/2), and IL-17 

(IL-17AR) have not been successful. Biologics targeting the IL-

8/CXCR1/2 axis did not meet the endpoints for the treatment of severe 

uncontrolled neutrophilic asthma. In a small clinical trial, the CXCR1/2 

inhibitor SCH527123 significantly reduced sputum neutrophil count, but 

only led to a modest improvement in asthma control [165]. Similarly, in 

a larger multicenter study in patients with uncontrolled persistent asthma, 

and high blood neutrophil count, the CXCR2 antagonist AZ5069 did not 

reduce severe asthma exacerbations [166]. Currently, none of the IL-

8/CXCR1/2 axis antagonists has achieved the endpoints in the treatment 

of severe neutrophilic asthma 

Biologics targeting IL-17 signaling, such as brodalumab [167], and 

secukinumab [168], have also not been successful in clinical trials. Busse 

at al. [167] in a randomized, placebo-controlled phase IIa trial of 

brodalumab, a monoclonal antibody against IL-17 receptor, in patients 

with moderate-to-severe asthma, reported that, brodalumab did not result 

in any statistically significant benefit in terms of ACQ scores, FEV1, or 

use of rescue short-acting β-agonists (SABA). Similarly, secukinumab 

failed to suppress ozone-induced airway neutrophilic inflammation in 

healthy volunteers [168]. The good news is that, both brodalumab (Siliq) 

[169], and secukinumab (Consentyx) [170], have been approved by the 

Food and Drug Administration for the treatment of plaque psoriasis, and 

ankylosing spondylitis. 

Macrolide Antibiotics 

Macrolide antibiotics, such as erythromycin (ERM), azithromycin 

(AZM), clarithromycin (CAM), and roxithromycin (RXM), and the 16-

membered lactone ring (spiromycin, josamycin, midecamycin), or the 

new ketolide antibiotic telithromycin have antiviral, antibacterial [171-

174], anti-inflammatory, and immunomodulatory effects [175-178]. 

Several studies have reported that treatment with AZM, CAM, and RXM 

decrease eosinophil and neutrophil counts, inhibit neutrophil migration, 

and oxidative burst activity and mediator release. Consequently, there is 

a decrease in the concentrations of neutrophil elastase, metalloproteinase-

9, IL-8, IL-6, IL-1β, TNF-α, and eosinophilic cationic protein (ECP) 

[178-183]. 

Long-term, low-dose macrolides plays an important role in the treatment 

of chronic inflammatory airway diseases [184,185], such as 

panbronchiolitis [186], cystic fibrosis [187], noncystic fibrosis 

bronchiectasis [188], bronchiolitis obliterans syndrome [189], post-lung 

transplantation bronchiolitis obliterans syndrome [190], and COPD [191]. 

Macrolide antibiotics have been used for the treatment of asthma since 
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1970 [192], and currently, they have become very popular for the 

treatment of severe, uncontrolled neutrophilic asthma [193,194]. The 

British Thoracic Society has outlined very valuable guidelines for the use 

of long-term macrolides in adults with respiratory diseases, including 

asthma [195]. 

Several clinical trials have documented the efficacy and safety of long-

term, low-dose macrolides in the treatment of severe asthma. Simpson, et 

al. [196] have shown that clarithromycin in patients with severe refractory 

asthma reduced  neutrophil count, and sputum IL-8 levels, although they 

did not observe any change in lung function or asthma control [196]. The 

Azithromycin for prevention of exacerbations in severe asthma 

(AZISAST) randomized, placebo-controlled trial investigated the 

efficacy of azithromycin in patients with severe asthma with history of 

severe exacerbations, despite receiving high-dose ICS and LABA [197]. 

There was no effect of AZM on the primary outcome in the total 

population when assessed without inflammatory phenotype. However, 

AZM (250 mg daily three times per week) as add-on treatment in patients 

with nonesonophilic asthma, defined by normal blood eosinophil count, 

and normal FeNO, resulted in significantly fewer severe exacerbations 

during 26-week period compared with controls [197]. Azithromycin 

significantly reduced both severe exacerbations, and lower respiratory 

tract infection in non-eosinophilic asthma phenotype by approximately 

67% compared to 38% in placebo group. Azithromycin was ineffective in 

eosinophilic asthma, and in fact, the eosinophilic subgroup had more 

exacerbations when taking AZM [26]. This underpins the importance of 

phenotyping in selecting patients for targeted precision therapies 

[193,197]. 

The second well conducted, randomized double-blinded, placebo-

controlled trial (AMAZES) compared add-on azithromycin (500 mg three 

times per week) with placebo for 48 weeks in patients with symptomatic 

asthma despite medium-to high dose ICS and LABA [198]. Treatment 

with add-on azithromycin significantly reduced the incidence of medium 

and severe exacerbation by 1.07 versus 1.86 per person-year, for AZM 

and placebo, respectively. AZM treatment was also associated with an 

improvement in Asthma Quality of life Questionnaire (AQLQ) scores in 

both groups of patients with eosinophilic and noneosinophilic asthma 

phenotypes [198].  

Similarly, the Telithromycin, Chlamydophila, and Asthma (TELICAST) 

multicenter, randomized, double-blind, placebo-controlled study in 278 

patients with moderate-to severe asthma reported significantly greater 

improvement in symptoms, and lung function in patients receiving 

telithromycin, 800 mg once daily, for 10 days compared with placebo 

[199]. Patients receiving telithromycin showed improvement in 

exacerbation symptoms at the end of treatment of 51% versus 29% in the 

placebo treated patients. There was also a significant improvement in 

FEV1 of 0.63 L in telithromycin-treated patients versus 0.29 L in placebo-

treated [199]. 

The Azithromycin Against Placebo in Exacerbations of Asthma 

(AZALEA) study investigated the effectiveness of azithromycin 

treatment as add-on to standard therapy for adult patients with 

exacerbation [200]. In the AZALEA clinical trial, addition of 

azithromycin 500 mg daily for 3 days to the standard treatment resulted 

in no statistically significant clinical improvement, including symptoms 

and quality of life scores, and  FEV1 [200]. This large trial in the United 

Kingdom had challenges in the recruitment of subjects, because there was 

widespread use of antibiotics in the 31 centers enrolled for the study. The 

study was therefore underpowered because a large number of patients 

(2044) were excluded, because they were already taking antibiotics for 

their exacerbations [200]. It is possible that the population randomized 

was not representative of the larger population, because more than 2000 

other patients were excluded from the study for other reasons [200]. 

However, long-term, low-dose macrolide antibiotic therapy does 

clinically, and significantly reduce severe exacerbations, improve lung 

function, and health-related quality of life (HLQoL) in patients with 

neutrophilic asthma.  

The outcomes of the above clinical trials, indicate that different 

macrolides including the dosages of the specific drugs may influence the 

immunomodulatory effects, and efficacy of macrolide antibiotics in 

patients with severe neutrophilic asthma. Phenotyping of patients, and 

treatment of comorbid diseases with neutrophilic asthma, such as allergic 

rhinitis, chronic rhinosinusitis with nasal polyps, gastroesophageal reflux 

disease, and obesity influence the effectiveness of macrolides [193]. 

Therefore, before patients are administered long-term macrolide therapy, 

the patients should be carefully selected; and comorbid disorders should 

be treated, in order to prevent unnecessary cardiotoxicities, and 

community-wide macrolide resistance. 

Bronchial Thermoplasty 

Bronchial thermoplasty (BT) is a novel bronchoscopic therapy aimed at 

reducing the hypertrophied ASM mass in patients with severe refractory 

asthma [201-203]. BT is approved for subjects aged 18 and above with 

severe persistent asthma not responding to high-dose ICS, LABA, and 

eosinophilic interleukin antagonists. It is suitable for all the phenotypes 

of asthma characterized by ASM hypertrophy, and severe airway 

remodeling [204-209], insensitive to eosinophilic biologics, such as 

neutrophilic, and paucigranulocytic asthma [208,209].  

Bronchial thermoplasty is a complex procedure, and should be performed 

in highly specialized centers. Performance of BT requires bronchoscopic 

meticulousness, dexterity, and good knowledge of the airway anatomy 

[210].  The selection and preparation of patients for BT is rigorous, and 

the procedure should be performed by experienced pulmonologists or 

bronchoscopists [205,206,210]. Patients for bronchial thermoplasty 

should be in an optimal stable condition, and selection of patients for BT 

is critical. In addition to their standard medical treatment for severe 

asthma, patients should be pre-treated with prednisolone 50 mg/day for 3 

days before BT, one day before BT, on the day of BT, and the day after 

bronchial thermoplasty [206]. Before the procedure, patients should be 

pre-treated with nebulized salbutamol and/or ipratropium bromide [206]. 

Bronchial thermoplasty is performed under moderate-to-deep sedation or 

general anesthesia [205-210]. At bronchoscopy a special disposable 

AlairTM catheter (Boston Scientific, Marlborough, MA, USA) with a 

distal diameter of 1.4 mm, and a basket-like array of expandable 

electrodes is inserted through the instrument channel [211]. Optimal 

thermoplasty of all subsegment bronchi is successful with ultrathin, 

rotatable bronchoscopes with increased ease of use and higher degree of 

flexibility [206]. BT trims excessive hypertrophied ASM mass, 

submucosal glands [201-203,208,212,213], collagen deposition [2013], 

epithelial cells, and neuroendocrine cells [214], and hyperreactive 

cholinergic nerves [215]. Thus, reducing all the structural changes 

involved in AHR, airway remodeling, and severe neutrophilic asthma. 

Noteworthy, BT promotes regeneration of epithelial cells [214], and 

persistently reduces mucin production after bronchial thermoplasty [216]. 

Bronchial thermoplasty also reduces regeneration of ASM cells, and 

decreases (Ki67+) subepithelial cells proliferation [17]. Furthermore, BT 

increases the expression and activation of glucocorticoid receptors (GR) 

in airway epithelial cells, and subepithelial mesenchymal cells [218], and 

probably restores steroid-sensitivity.  
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Post-bronchial thermoplasty care should be optimized, because BT-

associated adverse effects usually occur during the first 30 days after the 

procedure. Post-BT adverse events (Table 4) should not scare anyone, 

because bronchial thermoplasty has been demonstrated to be safe and well 

tolerated in experienced hands. 

Several clinical trials have reported the efficacy and safety of bronchial 

thermoplasty. Most studies have reported that BT improves asthma 

symptoms, reduces exacerbations, hospitalizations, and emergency 

department visits [201,208-213]. Additionally, BT improves asthma 

quality of life questionnaire (AQLQ) scores, lung function [201,219,220], 

and allows patients to wean or discontinue corticosteroids [219].  

The beneficial effects of BT are durable and can last up to 3-5 years 

[207,221-224]. At 5 years patients still have stable lung function, and lack 

of increase in hospital admission, and emergence department visits [220-

223]. Furthermore, BT has been reported to be still effective after 10 years 

of the procedure. The preliminary findings were that the AQLQ scores, 

and severe exacerbation rates were comparable to those recorded 1 year 

after bronchial thermoplasty [225]. Refinement in the technique is in 

progress, and more patients with severe refractory asthma will cherish 

thermoplasty. 

Conclusion 

Neutrohilic asthma is a severe phenotype of asthma characterized by 

persistent airway obstruction, and poor lung function. Interleukin-17, and 

its subordinate cytokine IL-8 play a key role in the pathogenesis of 

neutrophilic asthma, The dual cytokines promote trafficking, activation, 

and degranulation of neutrophil in the airways, which result in secretions 

of reactive oxygen species, proteases, cytokine, chemokines, and growth 

factors. These pro-inflammatory mediators propagate airway 

inflammation, AHR, and airway remodeling. Treatment of severe 

neutrophilic asthma is challenging, because it does not respond to Th2 

eosininophilic biologics, such as mepolizumab, and dupilumab; and 

targeting IL-17, IL-8 and their receptors has been unsuccessful, and 

fruitless. Macrolide antibiotics have immunomodulatory effects, and 

some patients with neutrophilic asthma respond to long-term, low-dose 

macrolide therapy. Bronchial thermoplasty is an innovative bronchoscopy 

procedure aimed at reducing the hypertrophied ASM mass. BT has been 

shown to improves asthma symptoms, reduce exacerbations, 

hospitalizations, and emergency department visits. Additionally, BT 

improves AQLQ scores, lung function, and allows patients to taper or 

discontinue corticosteroids. The therapeutic effects of BT can last for 

more than 5 years. 
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