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Abstract 

Asthma is a heterogeneous chronic airway disease comprising of distinct phenotypes characterized by different 

immunopathophysiologic pathways, clinical features, disease severity, and response to treatment. The phenotypes of 

asthma include eosinophilic, neutrophilic, mixed cellularity, and paucigranulocytic asthma. Eosinophilic asthma is 

principally a T helper type 2 (Th2)-mediated airway disease. However, several other immune and structural cells secrete 

the cytokines implicated in the pathogenesis of eosinophilic asthma. Innate type 2 lymphoid cells, mast cells, basophils, 

and eosinophils secrete Th2 cytokines, such as interleukin-4 (IL-4), IL-13, and IL-5. Additionally, airway epithelial cells 

produce alarmin cytokines, including IL-25, IL-33, and thymic stromal lymphopoietin (TSLP). Alarmins are the key 

initiators of allergic inflammation at the sentinel mucosal surfaces. Innovative biotherapeutic research has led to the 

discovery of monoclonal antibodies which target and inhibit the immunopathological effects of the cytokines involved in 

the pathogenesis of eosinophilic asthma. Parenteral biologics targeting the inciting interleukins, include mepolizumab and 

reslizumab (anti-IL-5), benralizumab (anti-IL-5Rα), dupilumab (anti-4Rα), and tezelizumab (anti-TSLP). They have been 

shown to significantly reduce annualized exacerbation rates, improve asthma control, lung function, and quality of life. 

Currently, there are no pulmonary delivered aerosol biologics for topical treatment of asthma. CSJ117 is a potent 

neutralizing antibody Fab fragment against TSLP, formulated as a PulmoSol TM engineered powder, and is delivered to 

the lungs by a dry powder inhaler. Phase 2 placebo-controlled clinical trial evaluated the efficacy and safety of CSJ117. 

CSJ117 delivered as an inhaler attenuated the late asthmatic response (LAR), and the early asthmatic response (EAR) after 

allergen inhalation challenge (AIC) at day 84 of treatment. The maximum decrease in FVE1 from pre-AIC were 

significantly lower in the CSJ117 group compared to placebo (P = 029), during LAR. CSJ117 also significantly reduced 

fractional exhaled nitric oxide before AIC at day 83; and significantly reduced the allergen-induced increase in % sputum 

eosinophil count. Pulmonary delivery of biologics directly to the airway mucosal surface has several advantages over 

parenteral routes, particularly in treating airway diseases such as asthma. Inhaler delivered biologics, such as CSJ117 are 

innovative and attractive methods of future precision treatment of asthma, and other respiratory diseases. 
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Introduction  

Asthma is a significant public health, and socio-economical problem 

affecting more than 358 million individuals worldwide [1]. It is a 

heterogeneous chronic airway disease encompassing distinct phenotypes 

characterized by different immunopathophysiological pathways, clinical 

features, disease severity, physiology, and response to treatment. The 

phenotypes of asthma include eosinophilic, neutrophilic, mixed 

cellularity, and paucigranulocytic asthma. Eosinophilic asthma is 

principally a T helper type 2 (Th2)-mediated disease. However, several 

other immune, such as innate type 2 lymphoid cells (ILC2s), mast cells, 

basophils, and eosinophils; and structural cells, including fibroblasts, 

myofibroblasts, and airway smooth muscle cells also secrete the 

cytokines, and chemokines implicated in the pathogenesis of eosinophilic 

asthma. Dysfunctional and injured airway epithelial cells exude a special 

type of cytokines termed alarmins, including IL-25, IL-33, and thymic 

stromal lymphopoietin (TSLP). Alarmins are the key initiators of allergic 

eosinophilic inflammation at the sentinel mucosal surfaces. Because there 

are several types of immune, and structural cells secreting cytokines 

promoting eosinophilic inflammation, eosinophilic asthma is also termed 

as Th2-high asthma, in contrast to Th2-low neutrophilic, and 
paucigranulocytic asthma.  

Despite national guidelines [1-3], and innovative therapies, such as single 

dual inhaler or single triple inhaler therapy [4-7], about 3.6-10% of the 

patients with asthma are unresponsive to the standard of care therapy [8-
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10]. Precise understanding of the pathophysiological mechanisms, and 

pathways involved in the pathogenesis of asthma has led to the innovate 

discovery of biologics for add-on treatment of severe, uncontrolled 

eosinophilic asthma.  

A repertoire of biologics are currently available for the treatment of 

severe, uncontrolled eosinophilic asthma [11-15]. Parenteral administered 

biologics targeting the inciting interleukins in the pathogenesis of asthma, 

include omalizumab (anti-IgE), mepolizumab and reslizumab (anti-IL-5), 

benralizumab (anti-IL-5Rα), dupilumab (anti-4Rα), and tezelizumab 

(anti-TSLP).  However, monoclonal antibodies (mAb) are less effective 

in the treatment of other phenotypes of asthma with low blood eosinophil 

counts, and low fractional exhaled nitric oxide (FeNO) levels, such as 

neutrophilic, and paucigranulocytic asthma [16-19]. Moreover, 

omalizumab [20], mepolizumab and benralizumab [21], and dupilumab 

[22, 23] therapies reduce exacerbations by about 50%, and are unable to 

eliminate exacerbations completely. Discontinuation of the biologics may 

result in poor asthma control, and even worse symptoms, and frequent 

exacerbations. Thus, there is still unmet need to explore for novel 

biologics capable of treating most of the phenotypes of asthma, and to 

prevent airway remodeling, and fixed severe airflow limitation. (Table 1) 

depicts the dosages of the approved biologics for the treatment of severe 
eosinophilic asthma. 

Biologic Dosage Efficacy 

Omalizumab* 75-375 mg SC Q 2/4 wk Reduces exacerbations (47-53%) 

Mepolizumab* 100 mg SC Q 4 wk Reduces exacerbations (50-60%) 

Reslizumab 3 mg/kg IV Q 4 wk Reduces exacerbations (34-75%) 

Benralizumab* 30 mg SC Q 8 wk Reduces exacerbations (25-60%) 

Dupilumab* 300 mg SC Q 2 wk Reduces exacerbations (60-80%) 

Tezepelumab* 210 mg SC Q 4 wk Reduces exacerbations (41-56%) 

Abbreviations:    IV, intravenous, given over 25-50 min; SC, subcutaneous, Q, every; wk, weeks. * Approved for childhood asthma. Pediatric dosages 

depend on age and body weight of the child or adolescent. 

Table 1: Dosages of approved biologics by the Food and Drug Administration for the treatment of severe asthma 

 

Results 

Airway epithelial cells play a key role in the regulation of tissue 

homeostasis by producing and secreting several proteins, such as 

antioxidants, lipid mediators, cytokines, chemokines, and growth factors 

[24, 25]. Damaged, and dysfunctional epithelium produce large quantities 

of cytokines, and growth factors that interact with the underlying 

mesenchymal cells, including fibroblasts, and myofiblobasts to induce 

epithelial-mesenchymal transition (EMT), promote airway remodeling 
[26-28], resulting in persistent airway obstruction [26].  

The epithelial-derived cytokines (also termed alarmins), such as 

interleukin-25 (IL-25) [29-31], IL-33 [31-34], and thymic stromal 

lymphopoietin (TSLP) [31,35-38] play an initiating key role in the 

pathogenesis of eosinophilic asthma. Alarmin cytokine secretion can be 

aroused by respiratory viral, bacterial, and fungal infections, allergens, 

proteases, chemical irritants, mechanical injury, and cytokines, such as 

TNF-α, IL-1β [24,29]. Epithelial-derived cytokines secretion during viral 

respiratory infections is the major trigger of asthma exacerbations, 
particularly in children [39,40]. 

Biologics targeting alarmin cytokines have a potential to prevent, and 

efficaciously treat asthma, and exacerbations [41-45].  Inhibiting 

upstream alarmin cytokines by specific monoclonal antibodies is a very 

effective strategy capable of interfering with the downstream 

inflammatory cascades resulting in eosinophilic asthma [41,46]. Current 

biologics are not disease modifying, and discontinuing treatment with 

these biologics result in return of the severity of asthma to pre-treatment 

levels, or even worsening of asthma control [47,48]. Blocking alarmins, 

has the potential to inhibit EMT, airway hyperresponsiveness, and 

remodeling, thus preventing decline in lung function, and persistent 

severe eosinophilic asthma [42]. 

Currently, there are no biologics targeting IL-25, and IL-33 approved for 

the treatment of eosinophilic asthma. Itepekimab is a human IgG4P 

monoclonal antibody targeting IL-33. Wechsler et al. [49] have shown 

that a single subcutaneous injection of itepekimab 300 mg reduces 

exacerbations, and improve asthma control, lung function (FEV1), and 

health-related quality of life (HLQoL). The efficacy of itepekimab was 

almost similar to that achieved by dupilumab, although the outcomes were 

slightly less. However, dual itepekimab plus dupilumab treatment did not 

result in any clinical and statistical improvement in asthma control, and 
lung function. 

Tezepelumab is a first-in class fully-human IgG2ʎ monoclonal antibody 

that binds to TSLP, thus blocking its interaction with the TSLP 

heterodimeric receptor, TSLPR, henceforth inhibiting multiple 

downstream inflammatory pathways [50,51]. Tezepelumab administered 

as add-on therapy has been shown to be efficacious, safe, and well 

tolerated by patients with severe uncontrolled asthma, regardless of the 

phenotype of asthma. Several clinical trials have documented that 

tezepelumab significantly reduces exacerbations by about 71%, and 

improve asthma control, lung function [52,53], and HLQoL in patients 

with severe, uncontrolled asthma [52]. Subgroup analysis of the 

PATHWAY study revealed that the reductions in annualized asthma 

exacerbation rates (AAER) were significant irrespective of patient 

phenotype, as assessed by blood eosinophil count (˂ 150 cells/µL), ≥ 150 

cells/µL, < 300 cell/µL or ≥ 300 cells/µL), and FeNO, and serum IgE [53]. 

This denotes that tezepelumab is equally effective in patients with 
different phenotypes of asthma [53].  

Pham et al. [54] re-analysis of the PATHWAY data showed that 

tezepelumab reduced blood eosinophil count, serum IgE, and FeNO 

levels; and Th2 cytokines, including IL-5, and IL-13 in patients with 

severe, uncontrolled asthma. Based on the findings from the PATHWAY 

studies, tezepelumab was granted Breakthrough Therapy Designation by 

the US Food and Drug Administration (FDA) in 2019 for patients with 

severe asthma without an eosinophilic phenotype, who were receiving 

ICS/LABA with or without OCS, and additional asthma controllers [55]. 

Phase III NAVIGATOR multicentre, randomized, double-blind, placebo-

controlled trial investigated the efficacy and safety of tezepelumab in 

1061 patients aged 12 to 80 years with severe, uncontrolled asthma [56]. 

Tezepelumab significantly reduced the annualized asthma exacerbation 

rate by more than half in this broad group of patients (P ˂ 0.001). The 

AAER average was 0.9 in the 529 patients who received tezepelumab 

versus 2.10 for the 532 patients who received placebo in the 52 week trial. 

Tezepelumab also significantly improved lung function. Pre-

bronchodilator FEV1 improved from baseline by about 0.23 L on average 

with tezepelumab, and by a mean of 0.09 L in patients who received 

placebo (P ˂ 0.001). Furthermore, tezepelumab treatment reduced the rate 

of emergency department visits by fivefold, and hospitalization by 85%. 

Notably, there was significant improvement in the Asthma Control 
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Questionnaire-6 (ACQ-6), and the Asthma Quality of Life Questionnaire 

(AQLQ) scores [56]. This shows that tezepelumab is efficacious and safe 

for the treatment of adolescents and adults with severe, uncontrolled 

asthma. 

Post-hoc analysis of phase 2b PATHWAY multicentre, randomized, 

double-blind, placebo-controlled study of 555 patients aged 18-75 years 

with severe, uncontrolled asthma with or without nasal polyps (NP) 

revealed that tezepelumab reduced AAER in both groups of patients [57]. 

Patients who received placebo with asthma and NP, and asthma without 

NP had higher AAER compared to those treated with tezepelumab [56]. 

The AAER was reduced to a similar extent in both groups of patients with 

asthma and NP, and asthma without NP who received tezepelumab 210 

mg. The reduction in AAER for patients with asthma and NP was 75%, 

and the reduction in AAER was 73% in patients with asthma without NP. 

In both groups of patients who received placebo, patients experienced one 

to three more exacerbations than in the tezepelumab 210 mg group. 

Furthermore, treatment with tezepelumab 210 mg resulted in decrease in 

blood eosinophil counts, and FeNO levels compared to placebo [57]. 

Exploratory analysis of the NAVIGATOR phase III trial has 

demonstrated that tezepelumab reduced exacerbations, and improved 

lung function; and nasal symptoms in patients with severe, uncontrolled 

asthma with nasal polyps [58]. Tezepelumab reduced AAER by 86% in 

patients with asthma and nasal polyposis, and by 52% in patients with 

asthma without nasal polyposis over 52 weeks, compared to placebo. 

Tezepelumab improved lung function at week 52 in both groups of 

patients with an increase in pre-bronchodilator FEV1 of 0.20 L in the 

patients with asthma and NP, and 0.13 L in patients with asthma without 

NP. Concomitantly, tezepelumab significantly improved symptoms of 

nasal polyps at week 52. It significantly reduced the SinoNasal Outcome 

Test (SNOT-22, [59]) scores in patients with asthma and nasal polyps by 

9.6 points versus placebo. The adjusted mean scores reduction from 

baseline for tezepelumab was 20.10 points, and for placebo was 10.55 

points. The baseline mean (± sd) SNOT-22 scores for tezepelumab was 

49.4 ± 21.5, and for placebo was 47.8 ± 19.0 [56]. Thus, demonstrating 

that tezepelumab may also be effective in the treatment of chronic 

rhinosinusitis with nasal polyps (CRSwNP) [58]. Tezepelumab is in phase 
3 clinical trials for the treatment of CRSwNP. 

The results from the NAVIGATOR trial exploratory analysis are exciting 

[58]. Patients with eosinophilic asthma and comorbid chronic 

rhinosinusitis with nasal polyps have more severe united airway disease 

than patients with eosinophilic asthma or CRSwNP alone [57,60]. 

Asthmatic patients with CRSwNP experience frequent exacerbations, 

hospitalization, emergency department visits; and have poor lung 

function, and HLQoL [61,62]. On the other hand, patients with CRSwNP 

and asthma have persistent severe nasal obstruction, hyposmia, sleep 

disturbance, anxiety, and depression, and worse HLQoL [63-65]. They 

are often corticosteroid dependent, and require frequent functional 
endoscopic nasal surgery for nasal polyps [66,67].  

Treatment of severe eosinophilic asthma with comorbid CRSwNP is 

challenging. Such patients require a universal targeted therapy, such as 

biologics, and in particular biologics delivered directly to the nasal 

airways, and tracheobronchial tree.  Currently, there are no approved 

intranasal or inhaler biologics for the treatment of eosinophilic asthma, 

and CRSwNP. Noteworthy, dupilumab [68], and omalizumab [69] which 

are administered subcutaneously are approved for the treatment of both 
eosinophilic asthma, and CRSwNP. 

Discussion 

Pulmonary Delivery of Aerosol Biologics 

Biological drugs (synonymous known as biologics) are a diverse group of 

therapeutic agents which are large and complex molecules produced 

through sophisticated biotechnology [70, 72]. The biologics currently 

used to treat severe asthma are monoclonal antibodies, and antibody 

fragments, which are administered subcutaneously, or intravenously 

(reslizumab). Injection of drugs is painful and inconvenient, especially 

when the drugs are for the treatment of chronic diseases, such as asthma, 

and alpha-1 antitrypsin deficiency [73, 74]. Moreover, 10% of the patients 

worldwide suffer from needle phobia leading to poor compliance [75]. 

Pulmonary delivery of biologics to the lungs improve pharmacokinetics, 

and toxicity profiles of proteins. It is a non-invasive route, and allows for 
self-administration, which could improve patient compliance [76]. 

Pulmonary delivery of biologics is an attractive non-invasive route of 

administration for the treatment of respiratory diseases [76-79], such as 

asthma [80-84], cystic fibrosis [85, 86], alpha-1 antitrypsin deficiency 

(AATP) [87,88], pulmonary alveolar proteinosis (PAP) [89,90], lung 

cancer [91,92], and SARS-CoV-2 [93-95]. Pulmonary delivery of 

biologics is also an alternative route for administering biologics for the 

treatment of non-respiratory systemic diseases, including diabetes 

mellitus [96-98], anaemia [99], and multiple sclerosis [100]. The 

development of inhalation biologics, and design of methods of inhalation 

technology are outside the scope of this manuscript, but excellent 

information can be found in references [76-79]. Table 2 shows preclinical 

trials of aerosol biologics for the treatment of respiratory diseases, and 
non-respiratory systemic diseases. 

Alpha-1 anti-trypsin deficiency (AATP) 

Pulmonary alveolar proteinosis (PAP)  

Cystic fibrosis 

Bronchiectasis 

Bronchiolitis obliterans organizing pneumonia (BOOP) 

Asthma  

Chronic obstructive pulmonary disease (COPD) 

Acute aplastic bronchitis 

Pulmonary hypertension 

Respiratory viral infections (RSV, Parainfluenza) 

Pneumonia (Pseudomonas aeroginosa) 

Tuberculosis 

Non-tuberculous mycobacterial infection 

Acute lung injury (ALI) 

Acute respiratory distress syndrome (ARDS) 

Respiratory viral infections (RSV, influenza) 

SARS-CoV-2 

Lung cancer, lung metastasis 
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Diabetes mellitus 

Multiple sclerosis 

Anaemia 

Infertility 

Table 2: Preclinical trials of aerosol biologics in respiratory diseases, and non-respiratory systemic diseases 

The large surface area, and the extensive vascularization of the airways, 

and lungs enable rapid absorption, and fast onset of action of drugs 

delivered to the lungs [101]. Pulmonary delivery also offers the advantage 

of delivering biologics at high concentration in the lungs, and directly to 

inflammatory cells, and has the potential to achieve high blood levels of 

the biologics. Additionally, there is a lower level of proteolytic enzymatic 

activity in the lung, and minimal first-pass metabolism [76], hence higher 

concentrations of the biologics in the airways, and lung parenchyma. 

However, despite the beneficial effects of pulmonary delivery of 

biologics, it requires innovative biotechnology to develop biologics, and 

inhaler devices to propel the biologics to the tracheobronchial tree, and 

lung parenchyma [76-79]. Furthermore, there are anatomical, 

physiological, and immunological factors that affect the 

pharmacodynamics, and biotherapeutic efficacy, and safety of inhaled 

biologics [102]. The other obstacle is the formulation of biologics for 

delivery into the lungs [78,79, 103]. Three methods have been applied to 

modify the structure, aerodynamic diameter (Dae), shape, hydroscopicity, 

and density of biologics to enhance their absorption through the 

mucociliary blanket, pharmacokinetics, and bioavailability [104,105]. 

They include antibody fragment development [106,107], Fc engineering 

[108,109], and pegylation [110,111]. Pegylation protects proteins from 

renal clearance and proteolytic degradation, thus prolongs protein local 

residence time, and bioavailability in the body [110]. Pegylation has been 

shown to be an effective method for extending the retention time of 

biologics in the lung, such as human alpha-1 proteinase inhibitor (α1-PI) 
[112], IFN-α [113], and antibody fragments [114,115]. 

The type of inhaler has critical importance for the delivery of biologics, 

because 75% of inhaled protein formulations in clinical research are 

produced as liquids [76]. There are four main types of inhalers for the 

delivery of orally inhaled proteins, peptides, and cytokines, such as 

pressure metered dose inhalers (PMDI), dry powder inhalers (DPI), soft 
mist inhalers (SMI), and nebulizers [77,79,116-120]. 

Most biologics in clinical trial for the treatment of asthma have been 

delivered to the lung by DPIs. However, SMIs are novel multidose 

propellant-free, handheld inhalers, and are more suitable for delivery of 

biologics than pMDI [79]. The most experience of pulmonary delivery of 

biologics with DPIs has been the Exubera® and Technosphere® insulin 

(Afrezza®), for the treatment of diabetes mellitus [121]. Currently, three 

DPIs have been utilized in clinical trials for the delivery of biologics to 

the lungs. They include the F1P for administration of the anti-IL-13 

monoclonal antibody fragment VR942 (Abrezekimab) [102]; 

Cyclohaler® (single dose, PB Pharma GmbH, Meerbusch, German) for 

the administration of DAS181 (Fludase®) [122]; and Concept1 (single 

dose, Norvatis, Basel, Switzerland) (NCT4410523) for administration of 

the anti-thymic stromal lymphopoietin monoclonal antibody Fab 

fragment CSJ117 [84,123]. Biotechnological modification of proteins and 

peptides, and proper inhaler devices can be successfully used to deliver 

biologics which are effective, and immunologically safe for the treatment 

of airway diseases, pulmonary diseases, and systemic diseases.  

The precise mechanism by which mAb, and antibody fragments exert 

their immunotherapeutic effects is by inhibiting surface receptors on 

immune and inflammatory, and immune cells, thus preventing these cells 

from secreting cytokines, chemokines, and adhesion molecules. Several 

mAb, and antibody fragments are currently in preclinical and clinical 

trials for the treatment of eosinophilic asthma [81-83,120,122-126], and 

neutrophilic asthma [127]. However, CSJ117 has demonstrated very 
encouraging and promising results. 

Csj117 Dpi for the Treatment of Eosinophilic Asthma 

CSJ117 is a potent neutralizing antibody Fab fragment against TSLP. It 

is formulated as a PulmoSol TM engineered powder in hard capsules for 

delivery to the lungs by a dry powder inhale (DPI). Phase 2 double-blind, 

placebo-controlled clinical trial evaluated the efficacy and safety of 

CSJ117 on the late asthmatic response (LAR), the early asthmatic 

response (EAR), and biomarkers of eosinophilic asthma after allergen 

inhalation challenge (AIC) [84,128].  CSJ117 significantly attenuated the 

LAR and EAR at day 84 of treatment. The maximum decrease in FVE1 

from pre-AIC were significantly lower in the CSJ117 group compared to 

placebo (P = 029), during LAR. CSJ117 also significantly reduced 

fractional exhaled nitric oxide before AIC at day 83; and significantly 

reduced the allergen-induced increase in % sputum eosinophil count [84]. 

This study demonstrates the potential of inhaled biologics, particularly 

those targeting the alarmin cytokines in the treatment and prevention of 

eosinophilic asthma. Aerosol CSJ117 by acting topically and blocking the 

immunopathological effects of TSLP may become the precise asthmatic 
drug delivery in the nearby future.   

Conclusion 

Eosinophilic asthma is principally a Th2-mediated airway disease. Th2 

lymphocytes, ILCs, mast cells, and eosinophils secrete inflammatory 

cytokines, such as IL-4, IL-13, and IL-5 which promote airway 

inflammation, AHR, and remodeling. Additionally, dysfunctional 

epithelial cells exude alarmin cytokines, including IL-25, IL-33, and 

TSLP which further amplifies the inflammatory cascade, and airway 

remodeling. Patients with eosinophilic asthma respond favourably to 

targeted mAb, such as omalizumab, mepolizumab, dupilumab, and 

tezepelumab. However, biologics do not modify progressive airway 

remodeling which is responsible for severe asthma. Conventionally, 

asthma is best treated with locally-acting aerosol inhalers, such as LABA, 

ICS, and single triple inhaler therapy. Currently, there are no aerosol 

biologics for the treatment of asthma. CSJ117 is a potent neutralizing 

antibody Fab fragment against TSLP, formulated as a PulmoSol TM 

engineered powder, and is delivered to the lungs by a dry powder inhaler. 

CSJ117 delivered as an inhaler has been shown to attenuate the late 

asthmatic response, and the early asthmatic response after allergen 

inhalation challenge at day 84 of the treatment. CSJ11 significantly 

improved pre-AIC lung function (FEV1) compared to placebo. 

Additionally, CSJ117 significantly decreased inflammatory biomarkers 

of eosinophilc asthma, such as allergen-induced increase in % sputum 

eosinophil count, and FeNO. Pulmonary delivery of aerosol biologics to 

the lungs is a precise targeted route of drug administration to treat patients 
with eosinophilic asthma. 
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AAER: Annualized asthma exacerbation rates 
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AATP: Alpha-1 anti-trypsin deficiency 

ACQ-6: Asthma Control Questionnaire-6 

AHR: Airway hyperresponsiveness 

AIC: Allergen inhalation challenge 

ALI: Acute lung injury 

AQLQ: Asthma Quality of Life Questionnaire 

ARDS: Acute respiratory distress syndrome 

BOOP: Bronchiolitis obliterans organizing pneumonia 

COPD: Chronic obstructive pulmonary disease 

COVID-19: Coronavirus Disease 19 

CRSwNP: Chronic rhinosinusitis with nasal polyps 

Dae: Aerodynamic diameter 

DPI: Dry powder inhaler 

AER: Early asthmatic response 

EMT: Epithelial-mesenchymal transition 

FeNO: Fractional exhaled nitric oxide 

FEV1: forced expired volume in one second 

HLQoL: Health-related quality of life 

ICS: Inhaled Corticosteroid 

IgE: Immunoglobulin E 

IL: Interleukin 

ILCs: Innate type 2 lymphoid cells 

LABA: Long-acting beta-2 agonist 

LAR: Late asthmatic response 

mAb: monoclonal antibody 

OCS: Oral Corticosteroid 

PAP: Pulmonary alveolar proteinosis  

PMDI: Pressure metered dose inhaler 

RSV: Respiratory syncytial virus 

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2 

SNOT-22: SinoNasal Outcome Test 22 

Th2: T helper type 2 lymphocytes 

TNF-α: Tumor necrosis factor-α 

TSLP, thymic stromal lymphopoietin 
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