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Abstract  

The present article is a review of our previously suggested concepts of “Distribution Dependent Correlations” (DDC), and 

“Intended Ranges”. DDC concern associations between relative amounts of positive scale variables, in unit systems where 

sum of the percentages is 100%. Such correlations arise mathematically on the condition that the variables in question have 

particular (“intended”) ranges.  For example, with three variables, two of which (A, B) having very low variability relative 

to a third one (C), we should expect a positive association between percent A and percent B, the slope being estimated by 

the B/A ratio. In addition, we should anticipate a negative relationship between %C and %A (%B). On the other hand, if A 

and B have high numbers and variability relative to C, then %A should relate inversely to %B. Furthermore, alterations in 

the ranges may have appreciable effects to change the associations. We present examples from physiology, where ranges 

seem to give strong DDC (positive and negative). The examples relate to body fatty acids, and white blood cell counts. 

Possibly, Intended Ranges could represent a case of evolutionary selection, to ensure proper balance between particular 

metabolites.  

Definitions and Abbreviations:  

Variability:  the width or spread of a distribution, measured e.g. by the range and standard deviation. 

Distribution: graph showing the frequency distribution of a variable within a particular range. In this article, we also use 

distribution when referring to a particular range, a – b, on the scale. 

Uniform distribution: every value within the range is equally likely. In this article, we may write, “Distribution was from a 

to b”, or “Distributions of A, B, and C were a - b, c - d, and e - f, respectively”.  

OA = Oleic Acid (18:1 c9); LA = Linoleic Acid (18:2 n6); ALA = Alpha Linolenic Acid (18:3 n3); AA = Arachidonic Acid 

(20:4 n6); EPA = Eicosapentaenoic Acid (20:5 n3); DPA = Docosapentaenoic Acid (22:5 n3); DHA = Docosahexaenoic 

Acid (22:6 n3); DGLA= dihomo-gammalinolenic acid (20:3 n6) 

 “Low–number variables” have very low numbers relative to “high-number variables”. 

Keywords: correlation rules; relative amounts; ranges; biological regulation; fatty acids; white blood cells 

Introduction  

This article is a review and extension of our previously suggested 

concepts of “Distribution Dependent Correlations” (DDC), and 

“Intended Ranges”. Below, we first present some theoretical 

considerations to explain mathematically the phenomenon of DDC.  Next, 

we show results of computer experiments with random numbers, to test 

the hypotheses.  Finally, we show some examples from physiology, where 

“intended ranges” seem to govern DDC.   

Particular background 

The idea of “intended ranges” and “distribution dependent correlations” 

originated from a diet trial in chickens, carried out for a specific purpose, 

without any bearing on the present subject [1]. During post-trial analyses 

of the data, we observed remarkably strong positive and negative 

correlations between relative amounts of the measured fatty acids (in 

breast muscle). The present work relates to some of these correlations, 
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and our efforts to explain them, as well as our attempts to find some 

general rules concerning associations between relative amounts.  

A major part of the current article relates to body fatty acids. In brief, 

dietary intake is a major factor to regulate the concentration of fatty acids 

in blood and tissues, and these lipids are important in health and disease 

[2-4]. For example, poly-unsaturated fatty acids with 20 or 22 carbon 

atoms are precursors of eicosanoids and docosanoids, which are important 

regulatory molecules formed in most organs and cell types, through the 

actions of cyclooxygenases, lipoxygenases, and epoxygenases [5].  EPA 

(20:5 n3) - derived eicosanoids may decrease inflammatory diseases [6,7], 

decrease the risk of coronary heart diseases [8,9], and cancer [10], but the 

beneficial effects of long-chain n3 fatty acids on all-cause and 

cardiovascular mortality have been questioned [11]. 

On the other hand, eicosanoids derived from AA (20:4 n6), such as 

thromboxane A2 (TXA2) and leukotriene B4 (LTB4), have strong 

proinflammatory and prothrombotic properties, and are involved in 

allergic reactions and bronchoconstriction [2, 3, 5]. Furthermore, AA- 

derived endocannabinoids may have a role in adiposity and inflammation 

[12]. Additionally, low serum EPA/AA ratio may be a risk factor for 

cancer death [10]. Thus, the EPA and AA antagonism could explain many 

of the alleged positive health effects of EPA.   

Also docosanoids, originating from C22 fatty acids (DPA, DHA), have 

strong metabolic effects. Among these latter compounds are protectins, 

resolvins, and maresins, which may strongly counteract immune- and 

inflammatory reactions [5].  Also eicosatrienoic acid, i.e. 20:3 n6 

(dihomo-gammalinolenic acid, DGLA) may give eicosanoids [5].  

To obtain a proper balance between the metabolic influences of the many 

eicosanoids and docosanoids, we should anticipate a coordinated 

regulation of their precursor fatty acid percentages, e.g. of % EPA, %AA, 

and %DGLA. Indeed, we might expect in general that these particular 

percentages of the total sum of fatty acids were positively associated, so 

that an increase (decrease) in e.g. %AA would be accompanied by a 

concomitant increase (decrease) in other fatty acid precursor percentages 

as well, in order to obtain the required balance. We previously reported 

that that %AA, %EPA, %DHA, as well as other eicosanoid (docosanoid) 

percentages were positively associated in breast muscle lipids of chickens 

[12 - 15], as discussed below. We also showed that the correlation 

outcomes related to the particular concentration distributions of the fatty 

acids. This finding seemed to be in line with the remarkably similar 

outcomes with true values and with surrogate random numbers, found on 

the condition that we sampled the numbers within the true ranges of the 

fatty acids [14 - 18].  Furthermore, computer experiments showed that 

altering the ranges strongly influenced the correlation outcomes, in 

support of our suggested name: Distribution Dependent Correlations, 

DDC [14, 18 - 27].   

In addition to the situation with body fatty acids, we observed that also 

the ranges of white blood cell (WBC) counts influenced the inverse 

relationship between e.g. the relative amounts of blood neutrophil 

granulocytes and lymphocytes [27]. We subsequently suggested the name 

“intended ranges” [28] to indicate ranges that might possibly serve to 

make strong correlations (positive and negative) between relative 

amounts of biological variables in “unit systems”, as exemplified by 

WBC, and by particular fatty acids 

Since DDC rules are general, they should apply to any unit system in 

nature. However, investigations specifically focusing upon this issue 

seem hard to find, in a literature search. The apparent lack of interest 

might possibly relate to a methodological concern encountered when 

correlating percentages of the same sum, since the associations arise 

mathematically. On the other hand, it may not be obvious whether we 

should reject strong positive (negative) associations between percentages 

of the same sum as correlation bias.  Rather, we previously suggested that 

intended ranges could be a case of evolutionary selection to obtain strong 

DDC [20 - 22]. The first part of this review article concerns mathematical 

explanations of correlations arising between percentages of the same sum. 

The presentation does not necessarily reflect our opinions in 

chronological order. Rather, we try to give a systematized presentation, 

based upon our present knowledge. However, in the second part, a 

synopsis of papers related to this topic, appear chronologically. We 

present some examples from physiology where evolution seems to have 

selected particular ranges to make relative amounts of some variables to 

be positively or negatively associated, mathematically, i.e. Distribution 

Dependent Correlations. 

Materials and Methods  

The present review concerns associations between relative amounts of 

positive scale variables in “unit systems”, where sum of relative amounts 

is 100%.  We define A, B, C… to be positive scale variables and S their 

sum, i.e. S = A + B + C +… All of the variables should have the same 

unit, for example, g/kg, g/L, moles/L, or counts/L, i.e. the absolute 

amounts of muscle fatty acids may appear as g/kg wet weight. 

Furthermore, each of the variables should have particular ranges.  

Previously [21], we investigated the association between relative amount 

of e.g. arachidonic acid (AA, 20:4 n6) and percentage of eicosapentaenoic 

acid (EPA, 20:5 n3), in chicken lipids. From histograms, the physiological 

concentration distributions (g/kg wet weight) for the fatty acids were 

determined. Next the sum (S, g/kg wet weight) of all fatty acids was 

computed, as well as and the remaining sum (R)  when omitting the couple 

of fatty acids under investigation, thereby apparently obtaining 3 positive 

scale variables. With these variables, and with surrogate random number 

variables, generated with the true concentration distributions, computer 

analyses as described in detail below, were carried out. Our previous 

analyses [20, 21] demonstrated that correlations between e.g. %A and %B 

depended upon the particular range of each of the variables involved, and 

we obtained qualitatively similar correlations using the true (measured) 

values, or random numbers, if ranges were like the measured ones.  

A major part of the present work consists of computer experiments using 

random numbers to explore further, how ranges of A, B, and C might 

influence correlations between relative amounts of the sum, S = A + B + 

C. This equation implies that sum of the A (B, C) percentages of S is 100; 

i.e. %A + %B + %C = 100, showing dependency between the percentages. 

We studied histograms, scatterplots, and correlations (Spearman’s rho). 

Computer experiments were performed, to study how alterations in 

ranges might change associations between %A, %B, and %C. Several 

repeats were carried out, with new sets of random numbers (for simplicity, 

n = 200 each time); the general outcome was always the same, but 

corresponding correlation coefficients and scatterplots varied slightly. We 

present the results mainly as scatterplots with correlation coefficients. In 

most of the computer experiments, the random numbers had uniform 

distribution, but we used random numbers with normal distribution as 

well, however obtaining qualitatively similar results.  We used SPSS 27.0 

for the analyses, and for making figures. The significance level was set at 

p < 0.05. We present further details under Results and Discussions. 

Results and Discussions 

Unit systems with two variables only 

We name the two variables A and B, respectively, and choose their ranges 

arbitrarily to be e.g. 11-37 for A, and 51 - 83 for B. Thus, A + B = S. 

Within these ranges, and for each of for example 200 cases, we generate 

random numbers of the variables. Thereby, we obtain 200 S-values: S1, 

S2, S3,. .. S200, each of which representing one of the 200 cases. We do not 

assume any relationship between the absolute amounts (Fig. 1, left panel). 

In contrast to this, the relative amounts of A and B must vary inversely, 

since sum of the relative amounts will always be 100%.  A (B) 
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percentages of S are %A = (A/S) x 100, and %B = (B/S) x 100, 

respectively. Thus, %A + %B = 100, or %B = -%A + 100, showing a 

perfect inverse linear relationship (Fig. 1, right panel).  All %A values 

must correspond inversely to %B, since %B = - %A + 100, irrespective 

of which of the allowed values of A (B) appearing for a certain case. For 

example, the lowest (highest) %A must correspond to the highest (lowest) 

%B.  Unlike this strict requirement put upon A and B percentages, for 

each case, the absolute A-value could have any values from 11 to 37, and 

B any value from 51 to 83, explaining the lack of correlation between A 

and B.    

Accordingly, in a unit system with two variables only, each of which with 

a particular range, we should find a perfect inverse relationship between 

their relative amounts, irrespective of their ranges. We may raise the 

question of whether the inverse relationship between relative amounts, in 

a “two-variable unit system”, could be of any physiological interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Association between absolute amounts (upper panel, left) and relative amounts (upper panel, right, and lower panels) of A and B, in a unit 

system, i.e. %A +% B = 100%, see text. We generated 200 uniformly distributed random numbers of both variables. In all panels, except lower, right 

panel, A had range 11-37, and B 51 - 83. In lower panel, right: A 70 - 90, B 10 - 25.  %A vs. %B:  rho = -1.000 in all, p<0.01.  

The equation %B= -%A + 100 shows that the regression line for %A vs. 

%B  should pass through 100% on both axes, irrespective of the sizes of 

the A and B values. However, the A and B ranges determine where we 

find the points on the %A vs. %B scatterplot. Thus, if A has low (high) 

numbers relative to B, then the points will appear in the lower (upper) part 

of the %A scale, implying that the %B to %A ratio is distributed among 

high (low) values, respectively (Fig. 1). The %B to %A ratio is equal to 

the B/A ratio, as seen from the calculation of the percentages. In medicine, 

we might encounter close to “two variable unit systems” where 

distribution of the B/A ratio among high or low values could be of clinical 

interest [29, 30].     

Below, we shall consider “unit systems” involving more than two positive 

scale variables, each of which having particular ranges. In the theoretical 

reasoning, we first utilize the equation of a straight line (y = ax + b). Next, 

we consider the relationship between relative amounts of the variables 

and their sum. The theory and computer experiments suggest that relative 

amounts (percentages) should correlate positively or negatively, because 

of their particular ranges.  

Unit systems with three variables [16] 

Applying the equation of a straight line (y = ax + b) 

In the current context, we have A + B + C = S, i.e. %A + %B + %C = 

100, or %B = -%A + (100 - %C).  This equation resembles that of a 

straight line (y = ax + b), however involving relative amounts of the three 

variables (A, B, C), each of which having a particular range. We will 

consider this equation in three particular situations: 1) if the expression 

(100 - %C) is approaching zero, i.e. %C being close to 100, 2) if %C is 

approaching zero, and 3) if %C approaches a constant. As shown below, 

in these conditions, we may obtain very strong correlations between 

relative amounts. Presumably, we should expect strong correlations, if 

they reflect biological regulation. 

% C Approaching 100 

The %A vs. %B Association  

If %C consists of high values (close to 100) and (100 - %C) > %A, then 

the equation appears to approach %B = %A, apparently showing a linear 

positive association between %A and %B. The requirement (100 - %C) > 

%A  is indeed satisfied, since the remaining value when calculating (100 

- %C) would have to be divided between %A and %B. Hence, the slope 

of the %A vs. %B regression line should be positive. Additionally, to 

obtain %C values close to 100, the numbers of A and B should be very 

low.  

Finding the %A vs. %B Slope 

We may estimate the slope by utilizing maximum and minimum values 

of %B and %A, i.e. by the ratio (%Bmax - %Bmin)/(%Amax - %Amin). A more 

general equation would therefore be: 

 %B(p - q)  = [(%Bmax  - %Bmin)/(%Amax - %Amin)] * %A (r - s) + z     
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The subscript parentheses indicate ranges of %A and %B, and z = 100 - 

%C. Thus, z becomes increasingly small as %C increases. The 

approximated slope value would accordingly be:   

ΔY/ΔX = (100·Bmax /Smin – 100·Bmin/Smax)/(100·Amax /Smin – 100·Amin/Smax) 

 Since ranges of A and B are very narrow in this case, we may do the 

following approximations: Amax = Amin = A, and Bmax = Bmin= B. Thus, 

ΔY/ΔX = (B·Smax – B·Smin)/(A·Smax – A·Smin) = B/A. 

Accordingly, the slope may be estimated by the B/A ratio, and should 

approach +1 only if A approaches B. Conceivably, the slope value 

computed manually based upon the approximated values may deviate 

somewhat from the corresponding one found by the computer. This 

deviation should increase in response to increasing the A and/or B ranges.   

Thus, if ranges of A and B are very narrow relative to the C – range, the 

slope estimate of the %A vs. %B regression line should be little 

influenced by the magnitudes of the variables. Furthermore, with these 

restrictions laid upon A, B, and C variabilities, we suggest that the slope 

estimate of  the %A vs. %B regression line (i.e. the B/A ratio) should 

apply to any C value on the positive scale, and to any sizes of the A and 

B numbers. Furthermore, with very narrow ranges of A(B), the scatterplot 

of the %A vs. %B association should be close to a line, since one 

particular value of %A (and of %B) corresponds closely to one S-value 

only. Hence, %A and %B should show a strong positive association.  

Thus, the %A vs. %B scatterplot should improve (be poorer) in response 

to narrowing (broadening) the A and/or B ranges, and also improving (be 

poorer) when increasing (decreasing) the C-range.  

The %C vs. %A (%B) Association  

Since %C values are very high, it follows that A(%A) and B(%B) should 

be low.  We rewrite the equation %A + %B + %C = 100, to be %B = -

%C + (100 - %A).  With very low %A - values, the equation would 

approach %B = -%C + 100, suggesting that %C and %B are inversely 

related. Similarly, the approximation %A = -%C + 100, suggests an 

inverse %C vs. %A association. Hence, in the current case, we should 

expect a negative %C vs. %A (%B) association.  

Finding the slope of %C vs. %A (%B) when A (B) Ranges are Narrow 

Relative to the C – Range [26] 

Slope of the %C vs. %A (%B) regression line may be roughly estimated 

using maximum and minimum values of %C and %A, i.e. ΔY/ΔX = - 

(%Cmax - %Cmin )/(%Amax  - %Amin). Similarly, slope of the %C vs. %B 

regression line may be estimated by ΔY/ΔX = - (%Cmax - %Cmin )/(%Bmax  

- %Bmin). In these cases, the simplification above does not work, due to 

high C (%C) - variability. 

 Computer Test: To obtain very high %C values relative to %A and %B, 

we arbitrarily chose A 1.0 - 1.04; B 2.0 - 2.05; C 1 - 10. As shown in Fig. 

2, there was a strong positive association between %A and %B (rho = 

0.999, p<0.01, n =200. Equation of the regression line was %B = 1.985 

(0.003)*%A + 0.001 (0.014), SE is shown in parentheses. The B/A ratio 

estimated the slope well. As expected, there was a strong negative 

relationship between %C and %A (%B), rho = -1.000 (-1.000), p<0.01 for 

both, n = 200. Quartiles of %A, %B and %C were 1.2, 1.8, 4.1; 2.4, 3.5, 

8.0; and 87.9, 94.6, 96.3, respectively. Thus, %C had high values relative 

to %A and %B. Skewness of %A, %B, and %C was 2.56, 2.57, and -2.57, 

respectively (SD 0.17 for all). Below, we will explain this skewness 

outcome. 

 

  

 

 

 

 

Figure 2:  Association between %A and %B. The figure relates to the equation %A + %B + %C = 100, see text. Random numbers (n = 200) with 

uniform distribution were generated. Ranges were A 1.0 - 1.04; B 2.0 - 2.05; C 1 - 100.  %A vs. %B: rho = 0.999; %C vs. %A (%B): rho = - 0.999 (- 

1.000); p<0.01 for all. 

These results seem to be in line with the reasoning above: with high %C 

values relative to %A and %B values, we should expect a positive 

association between %A and %B, and a negative relationship between 

%C and %A (%B). Additional computer experiments with a large number 

of varying ranges of the variables, however always keeping the above 

restrictions, showed results in keeping with the reasoning above (results 

not shown). 

% C Approaching Zero [16, 19] 

If %C in the equation %B = -%A + (100 - %C) consists of very low values 

relative to %A (%B), we would expect a negative %A vs. %B association, 

since the equation then would approach %B = - %A + 100. However, in 

this case we should probably not expect that a decrease in %C would 

suffice to compensate a major increase in %A or %B. Hence, we should 

probably expect a poor correlation between %C and %A (%B). 

Computer Test: To obtain very low values of %C relative to %A and %B, 

we arbitrarily chose A 10 - 50, B 20 - 67, C 0.10 - 0.13. Spearman’s rho 

= -1.000 for %A vs. %B, p<0.01, n =200; rho = 0.044 (-0.048), p = 0.532 

(0.502) for %C vs. %A (%B). Quartiles of %A, %B and %C were 33.2, 

40.8, 50.0; 49.9, 59.1, 66.6; 0.12, 0.15, and 0.18, respectively. Thus, 

values of %C were small relative to those of %A and %B. 

%C Approaching a Fixed Number 

If %C is close to a constant value, k, then the equation %A + %B + %C 

= 100 may be written %B = -%A + k, where k = 100 - %C.  In this case, 

%A and %B should be inversely related. To achieve that %C is near a 

constant, the C-range should be very narrow. 

Computer Test: To make %C close to a constant, we arbitrarily chose A 

2 - 24; B 4 - 40, and C 3.0 - 3.3.  As expected, %A correlated negatively 

with %B (Fig. 3, left panel), 
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 rho = -0.975, p<0.01, n =200. Quartiles of the %A, %B, and %C 

histograms were 23.2, 34.8, 45.2; 45.9, 57.0, 68.4; 6.5, 8.1, 10.4, 

respectively. The %C vs. %A (%B) scatterplots were poor (not shown). 

We found strong positive skewness (1.62) of the % C distribution, and 

weak skewness of %A and %B, i.e. 0.29 and -0.37, respectively. 

 

 

 

 

 

 

 

 

 

Figure 3:  Association between %A and %B. The figure relates to the equation %A + %B + %C = 100, see text. Random numbers (n = 200) with 

uniform distribution were generated. Ranges in left panel were A 2 - 24; B 4 - 40; C 3.0 – 3.3, and in right panel A 2 - 24; B 4 - 40; C 3 – 18. Left 

panel: rho = -0.975.  Right panel: rho = -0.764, p<0.01 in both. 

According to the reasoning above, we should expect a poorer scatterplot 

if broadening the C range, thereby moving away from a situation where 

C is close to a constant. To obtain this condition, we broadened the C 

range to 3 - 18, while keeping ranges of A and B.  As shown in Fig., right 

panel), the %A vs %B scatterplot did become poorer, and so did the 

correlation coefficient (rho = -0.764, p<0.01, n =200. Quartiles of the %A, 

%B, and %C histograms were 23.7, 31.4, 40.9; 34.3, 46.0, 56.5; 14.7, 

22.6, 30.8, respectively. The positive skewness of the % C distribution 

was attenuated to 0.34. %A and %B distributions had normalized, 

skewness being 0.18, and -0.06, respectively. Thus, broadening the C-

range had moved the %C distribution towards higher values, and made 

%C deviate appreciably from a fixed number. Both mechanism should 

work in favour of attenuating the negative %A vs. %B association.  

To illustrate a mathematical point, we studied correlations between 

percentages of variables with very narrow ranges. First, we made the 

following ranges: A 4.0 - 4.1; B 7.0 - 7.1; C 5.00 - 5.01, i.e. C should be 

closer than A and B to be a fixed number. We should, accordingly, expect 

a negative %A vs. %B association, and this was verified in a computer 

test (Fig. 4).  %A vs. %B, rho = -0.805, p<0.01, n =200.  

 

 

 

 

 

 

 

 

Figure 4:  Association between %A and %B when range of C << ranges of A and B. The figure relates to the equation %A + %B + %C = 100, see 

text. Random numbers (n = 200) with uniform distribution were generated. A 4.0 - 4.1, B 7.0 - 7.1, C 5.00 - 5.01 (%B vs. %A, rho= -0.805, p<0.01).  

Considering Associations between Fractions and Sum (S)  

Accordingly, if  %C is approaching 100, obtained e.g. when A and B have 

low numbers and narrow ranges relative to C, we might expect a positive 

association between %A and %B, and a negative relationship between 

%C and %A (%B).  Below, we consider further how ranges might govern 

associations between relative amounts of A, B, and C.  

Two Positive Scale Variables (A and B) with Narrow Ranges Relative 

to a Third One (C) with High Variability [25, 26] 

We consider the relationship between sum (S = A + B + C) of the variables 

and the A (B, C) fractions of S. If %A, as well as %B, relate negatively 

to S, we should expect a positive correlation between percent A and 

percent B. Furthermore, %C vs. %A (%B) should be inversely related, 

because we would expect %C to increase with increasing S. To explain 

this outcome in more detail, we omit ranges of the variables. The A, B, 

and C fractions of S are Af =A/S, Bf = B/S, and Cf = C/S, respectively. 

By definition, Af = A/(A + B + C) = 1/(1 + B/A + C/A). However, since 

we - in the current context - define ranges of A and B to be very narrow, 

the B/A ratio is close to be a fixed number. Therefore, Af would approach 

Af = 1/(k +C/A) where k approaches a constant, k = 1 + B/A. Similarly, 

the B-fraction of S, Bf = B/ (A + B + C) = 1/ (1 + A/B + C/B), i.e. Bf = 

1/ (t + C/B), where t is close to be a constant, t = (1 + A/B).  
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This means that C will largely govern the A (B) fractions of S. Thus, when 

C and S (being mainly composed of C) go from lowest to highest value, 

then Af = 1/(k + C/A), and also Bf = 1/(t + C/B), will go from the highest 

to the lowest value. Hence, S should relate inversely to the A- and B- 

fractions (percentages). This way of reasoning should apply to any 

positive values of A, B, and C, if ranges of A and B are very narrow 

relative to that of C.  Accordingly, with this restriction, we should expect 

percent A to be positively associated with %B, wherever we place A, B, 

and C on the positive scale. However, increasing the A- and/or B-ranges 

(variabilities), and/or decreasing the C-range, would cause deviations 

from the above restrictions, and accordingly attenuate the %A vs. %B 

association, suggested to be reflected in poorer scatterplots and 

correlation coefficients.  

The C-fraction of S is Cf = C/S = C/ (A + B + C), i.e. Cf = 1/ (1 + z/C), 

where z is close to a constant, z =A + B. Therefore, the C fraction (and 

percentage) of S should increase with increasing C (from lowest to 

highest value), and accordingly also with increasing S, because C is the 

main contributor to S. Thus, S should be positively associated with %C, 

irrespective of where on the positive scale we place A, B, and C. It follows 

that %C should be negatively associated with %A and %B.  In summary, 

from the relationships between S and A (B, C) percentages (fractions) of 

S, when putting the current restrictions on the ranges, we would anticipate 

a positive %A vs. %B association, and an inverse relationships between 

%C and %A (%B), wherever we encounter A, B, and C on the positive 

scale.  

Computer Tests  

A (B) with low variability and C with high variability 

We arbitrarily used the following ranges A 3.0 - 3.3, B 8.0 - 8.8, C 0 - 

100, i.e. A (B) with low variability relative to C. %A correlated positively 

with %B, rho = 1.000, p<0.01, n = 200. 

%C vs. %A (%B), rho = -0.999 (-1.000), p<0.01 for all, n = 200. Quartiles 

of %A, %B, %C were 3.6, 5.0, 8.4; 9.1, 12.7, 21.5; 70.0, 82.3, 87.2, 

respectively. Skewness of %A, %B, and %C were 2.07, 2.05, and -2.06, 

respectively, i.e. a strong positive skewness of %A and %B, and a strong 

negative skewness of the %C distribution (Fig. 5). 

 

Figure 5:  Association between %A and %B (left panel); the figure relates to the equation %A + %B + %C = 100, see text. Random numbers (n = 

200) with uniform distribution were generated. Ranges were A= 3.0 - 3.3, B= 8.0 - 8.8, and C 0 - 100.   %A vs. %B: rho = 1.000; p<0.01, p<0.01, 

n=200. Eq. of the regression line %B = 2.533 (0.008)*%A + 0.041 (0.070) 

 

 

 

 

 

 

Figure 6:   Histograms of the distributions of %A, %B, and %C; the figure relates to the equation %A + %B + %C = 100, see text. Random numbers 

(n = 200) with uniform distribution were generated. Ranges were A= 3.0 - 3.3, B = 8.0 - 8.8, and C 0 - 100.  Skewness of %A, %B, and %C were 

2.07, 2.05, and -2.06, respectively; SE of skewness was 0.17 for all. 

As expected, C correlated positively with %C, and negatively with %A 

(%B), not shown. 

All of the three variables (A, B, C) have very narrow ranges, but one of 

them (C) is closer to a constant than the remaining ones 

Above, we showed that, if choosing C to be close to a fixed number, the 

equation %B = -%A + (100 - %C) may be approximated to %B = -%A + 

k, where k is near a constant equal to (100 - %C). Accordingly, %A should 

relate negatively to %B, irrespective of the sizes and ranges of A and B.   

All of three variables (A, B, C) have very narrow ranges, but two of them 

(A, B) are closer to a constant than the remaining one (C) 

If A and B are even closer than C to be fixed numbers, then %A and %B 

should be positively associated. In this latter case, Af = A/(A + B + C), 

i.e. Af =1/( 1 + B/A + C/A), which may be written Af = 1/( t + C/A) where 
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t  = 1 + B/A, being close to a constant. Similarly, Bf = 1/(k + C/B) where 

k is near a constant, 1 + A/B. Accordingly, Af, as well as Bf, are not far 

from being dependent upon C only. Both fractions should decrease as C 

increases from lowest to highest value. Hence, Af (%A) and Bf (%B) 

should correlate positively.   

Computer Test: First, we arbitrarily chose the following ranges: A 3.00 – 

3.01; B 7.00 – 7.01; C 3.000 – 3.001, i.e. all are very near constants; 

however C being closer to a fixed number than A (B). As predicted, %A 

correlated negatively with %B (Fig. 7, left panel), rho = -0.906, p<0.01, n 

=200. Eq. of the regression line was %B= -0.819 (0.025) * %A + 72.76 

(0.59). We next made the ranges to be A 3.000 - 3.001, B 7.000 - 7.001, 

and C 3.0 - 3.1, i.e. A (B) were made closer to fixed numbers than C. As 

shown in Fig. 7, right panel, we then obtained a strong positive correlation 

between %A and %B (rho =1.000, p<0.01, n =200. 

 

 

 

 

 

 

 

 

Figure 7:  Association between %A and %B, when ranges of A and B differ appreciably. The figure relates to the equation %A + %B + %C = 100, 

see text. Random numbers with uniform distribution. Left panel: Range of A 3.00 - 3.01, B 7.00 - 7.01, and C 3.000 - 3.001.  %A vs. %B: rho = -

0.906; p<0.01, n =200. Right panel: A 3.000 - 3.001, B 7.000 - 7.001, and C 3.00 - 3.10.  %A vs. %B: rho =1.000; p<0.01, n =200. 

We finally used these ranges: A 200.0 - 200.2; B 30.0 - 30.3; and C 20.00 

- 20.02. The relative variability was for A (0.2·100)/200 = 0.1%; for B 

(0.3·100)/30 =1.0%; and for C (0.02·100)/20 = 0.1%. This means that A 

and C were closer to fixed numbers than B. In this latter case, Af = 1/( 1 

+ B/A + C/A). However, since A and C are closer than B to fixed numbers, 

we may write Af = 1/(q + B/A), where q  = 1 + C/A is close to be a 

constant. Similarly, Bf = B/(A+B+C) = 1/(1 + A/B + C/B) may be written  

Bf = 1/(u + A/B) where u is close to be a constant, (1 + C/B). Therefore, 

Af - as well as Bf - are mainly dependent upon changes in B. However, 

Af should decrease as B runs from lowest to highest value, whereas Bf 

should increase. Accordingly, Af and Bf should relate inversely. Cf = 

C/(A + B + C)= 1/(1 + A/C + B/C).  Since A and C are closer than B to 

be constants, we may write Cf = 1/( v + B/C) where v = 1 + A/C , i.e. near 

a constant. Thus, Cf is also mainly dependent upon B, and Cf should 

decrease as B increases from lowest to highest value. Since Af as well as 

and Cf are expected to decrease as B increases, Af and Cf should correlate 

positively.  

Computer Test:  As expected, we found a positive correlation 

between %A and %C (rho = 0.570), and a negative association 

between %B and %A(%C), rho = -0.994 (-0.648); p<0.01 for all, n = 200. 

Furthermore, B correlated negatively with %A (%C): rho = -0.985 (-

0.683), and positively with %B (rho =0.996), p<0.01 for all, n = 200. The 

scatterplot of %A vs. %B is shown in Fig. 8. 

 

 

 

 

 

 

 

 

 

Figure 8: Association between %A and %B). The figure relates to the equation %A + %B + %C = 100, see text. Ranges were A 200.0 - 200.2; B 

30.0 - 30.3; and C 20.00 - 20.02; rho = -0.994, p<0.001, n = 200.  

These experiments illustrate that, if all of the three variables are close to 

be fixed numbers, then closeness to be constants (zero variability) appears 

to govern the correlation outcome. Anyhow, distributions (ranges) of the 

variables seem crucial for making strong positive or negative Distribution 

Dependent Correlations.  

 

Turning Point 

The experiments above show that we may achieve that a positive 

(negative) correlation between relative amounts changes to become 

negative (positive), in response to altering ranges of the variables. Below, 
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we consider further how ranges may govern direction and strength of 

correlations. 

Based upon the equation %A + %B +%C = 100, i.e. %B = -%A + (100 - 

%C), we suggested above that %A should correlate positively with %B if 

%C values were very high, and negatively if %C values were very low. 

This reasoning implies that somewhere in-between these extreme 

conditions, we should expect to find e.g. that a positive (negative) %A vs. 

%B association would turn to become negative (positive), in response to 

decreasing (increasing the values of %C. We define this condition the 

Turning Point. 

Computer Test: To possibly find a Turning Point from positive to negative 

correlations, through gradually decreasing %C, we started with a 

condition giving a positive %A vs. %B association, i.e. A 3.0 - 3.3, B 8.0 

- 8.8, and C 0 - 100 (Fig.9, left panel). To decrease C gradually, we 

narrowed the C range towards the lower limit, while keeping the ranges 

of A and B. With C 0 - 10 (Fig. 9, middle panel) ,  we found rho = 0.976  

for %A vs. %B; %C vs. %A (%B), rho = -0.987 (-0.998);  S correlated 

negatively with %A and %B; rho =-0.989 and -0.988, respectively, and 

positively with % C (rho = 0.993), p<0.01 for all, n = 200. The scatterplots 

for the %A vs. %B association became poorer with C range 0 - 10 as 

compared with C range 0 - 100 (Fig 9. middle and left panels). With C 0 

- 10, skewness of the %A, %B, and %C distributions was 0.20, 0.32, and 

- 0.30, respectively (SE of skewness was 0.17 for all). Quartiles of the 

%A, %B, and %C distributions were 16.9, 19.8, 22.4; 45.3, 52.5, 61.1; 

16.4, 27.8, 38.1. Thus, skewness of relative amounts had decreased 

appreciably, i.e. from 1.79, 1.79, and -1.78, for %A, %B, and %C, 

respectively, observed with C-range 0 - 100. Furthermore, the %C 

distribution had moved towards appreciably lower values i.e. quartiles of 

the %C histogram were 69.2, 81.8, and 87.0, respectively when the C - 

range was 0 - 100. These experiments show that the positive association 

between %A and %B prevailed in spite of moving %C far away from 

100%. 

We next decreased %C further by narrowing the C range to be 0 - 1. This 

narrowing was accompanied by a very poor %A vs. %B scatterplot (Fig. 

9, right panel) and correlation coefficient poor (rho = 0.268, p<0.01, n 

=200). In this case, the %C distribution had moved even more towards 

low values, quartiles of %C being 2.1, 3.9, and 6.0, respectively. 

 

 

 

 

 

 

 

 

Figure 9:  Association between %A and %B (left panel); the figure relates to the equation %A + %B + %C = 100, see text. Random numbers (n = 

200) with uniform distribution were generated. Left panel: ranges were A 3 - 3.3; B 8- 8.8, C 0 - 100. Middle panel A 3.0 - 3.3; B 8.0 - 8.8, C 0 - 10. 

Right panel: A 3.0 – 3.3; B 8.0 - 8.8, C 0 - 1.  %A vs. %B (left/middle/right): rho = 0.994/0.975/0.268 p<0.01 for all. 

We continued narrowing the C range to be 0 - 0.1, while still keeping A 

3.0 - 3.3, and B 8.0 - 8.8. As shown in Fig. 10, we then obtained a strong 

negative association (rho = -0.946, p<0.01) between %A and %B, 

showing that we had passed through the Turning Point. Thus, by 

gradually decreasing the %C - values, the %A vs. %B association had 

turned from being strongly positive to becoming strongly negative. 

Conceivably, alterations in the C range caused changes in histograms of 

%A and %B as well. As predicted, skewness of the %A (%B, %C) 

histograms changed appreciably in response to narrowing the C range. 

With C 0 - 0.1, we found close to a normal distribution, i.e. skewness of 

%A, %B, and %C being -0.060, -0.086, and 0.110, respectively. In this 

case, %C quartiles had decreased to 0.2, 0.4, and 0.6, respectively, i.e. 

approaching a situation where we might roughly approximate the 

equation %B = -%A + (100 - %C) to %B = -%A + 100, showing a 

negative %A vs. %B association.  
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Figure 10:  Association between %A and %B; the figure relates to the equation %A + %B + %C = 100, when ranges of C is varied (see text). 

Random numbers (n = 200) with uniform distribution were generated; left panel: A 3.0 - 3.3; B 8-– 8.8, C 0 - 0.1.  %A vs. %B, rho = -0.946, p<0.01; 

right panel: A 3.0 - 3.3; B 8.0 - 8.8,  

C 0 - 0.01.  %A vs. %B, rho = -0.999, p<0.01. 

We finally narrowed the C range to 0 - 0.01 (Fig. 10, right panel). In this 

case, we observed that the scatterplot improved further; rho = -0.999, 

p<0.01, n=200.  Skewness of %A, %B, and %C were -0.074, 0.064, and 

-0.069, respectively. %C quartiles had decreased to 0.02, 0.04, and 0.06. 

These examples seem to support the idea that there should be a Turning 

Point where a positive correlation between A- and B percentages of S 

turns to become negative, in response to progressively decreasing the C - 

range. Furthermore, the experiments indicate that we may reach the 

Turning Point as skewness of the %C distribution approaches zero. 

Moreover, the correlations attenuate when approaching the Turning 

Point. 

Skewness of the distributions of relative amounts 

In many of the previous examples, we observed that distributions of A- 

and B- percentages of S had positive skewness, and %C had negative 

skewness, raising the question of how to explain skewness of the relative 

amounts of A, B, and C. 

We consider again S = A + B + C, where A and B have narrow ranges 

relative to the C-range. The A-percentage of S, %A = 100A/(A + B + C) 

= 100/(1 + B/A +C/A) = 100/( t + C/A), where t = 1+ B/A is close to a 

constant. Thus, C is the governor of %A, irrespective of where we place 

A and B on the positive scale. Furthermore, %A should relate inversely to 

C, since the denominator increases as C increases from lowest to highest 

value.  

Additionally, we should expect a low number of C-values to be associated 

with each % A- unit decrease in the upper end of the %A scale. In contrast, 

there should be a high number of C values associated with each %A–unit 

decrease in the lower end of the %A– scale. We should, accordingly, 

anticipate a positively skewed histogram of %A, keeping in mind that the 

number of C values is an estimate of the number of cases (points on the 

scatterplot). The same reasoning goes for %B, which should have a 

positively skewed distribution as well. The following example might 

serve to illustrate this general suggestion, using the ranges: A 1.0 - 1.1, B 

2.0 - 2.1, and C 1 - 100. Thus, with C = 1, %A = 100·A/(A + B + C) = 

100·1/ (1 + 2 + 1) =100/4 = 25.0%. If increasing C one unit, %A = 100/(1+ 

2 + 2) = 20.0%.  However, a similar one-unit increase in C at the upper 

end of the C-range results in a much smaller decrease in %A, i.e. from 

100/(1+ 2 + 99) = 0.98% to 100/(1+ 2 + 100) = 0.97%. Accordingly, the 

curvilinear negative association between %A and C should have the 

concave upwards. Similar considerations should apply to the negative %B 

vs. C association. It is beyond the scope of this article to discuss this 

outcome in more detail, mathematically. 

The C-percentage of S is %C = 100·C/(A + B + C) = 100/(1 + z/C) where 

z = (A + B) is close to a fixed number. Thus, %C should increase when 

increasing C from lowest to highest value. However, this effect should 

attenuate with increasing C-values, showing a positive curvilinear 

relationship between percent C and C, with the concave downwards. For 

example, when C goes from 1 to 2, then %C increases from approximately 

100·1/(1 + 2 + 1) = 25% to 100·2/(1 + 2 +2) = 40%. A similar one-unit 

increase in C at the upper end of the C-range, i.e. from C = 99 to C =100, 

is associated with a very small increase in %C, i.e. from 100·99/(1 + 2 + 

99) = 97.06% to 100·100/(1 + 2 + 100) = 97.09%.  This reasoning 

suggests that the concave should be downwards for the positive 

relationship between %C and C. The finding that C is negatively 

associated with %A and %B explains that these percentages of S are 

positively associated. Furthermore, since %C is positively associated with 

C, percent C should be negatively related to %A and %B. 

Accordingly, we should expect a low number of C-values to be associated 

with each %C - unit increase in the lower end of the %C scale. In contrast, 

there should be a high number of C values associated with each %C – unit 

increase in the upper end of the %C – scale. Hence, the number of C 

values (each of which representing a case) increases for each unit increase 

in %C. Thus, there should be a negatively skewed histogram of %C (Fig. 

11, lower panels). Since the C - range is the governor of skewness, an 

increase (decrease) in this range should increase (decrease) skewness of 

the %A(%B, %C) histograms.  

Thus, on the condition that ranges of A and B are very narrow relative to 

that of C,  the C-range will determine skewness of  the %A-, %B-, and 

%C- distributions, as well as correlations between the percentages. 

Indeed, we may consider skewness as a marker of the current correlations 

[22]. 

When making a scatterplot of e.g. the association between C and %A, the 

independent variable (C) regularly appears on the abscissa. However, to 

improve the illustration of how the C-range governs skewness of the 

distributions of relative amounts, in the next example we have switched 

axes, so that percentages appear on the abscissa, and C values on the 

ordinate (Fig. 11). We used the following ranges: A 2.00 - 2.02, B 3.00 - 

3.03, and C 1 - 100. Thus, with %A = 2, and using the definition %A = 
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100·A/(A + B + C), the equation would be  2 = 100·2/(2 + 3 + C); i.e. C 

=  95.0. If increasing %A by one unit, we have 3 = 200/(5 + C), i.e. C = 

61.7.  A similar one-unit increase at higher %A values is associated with 

a lower decrease in C. For example, if %A goes from e.g. 20% to 21%, C 

decreases, from 5.0 to 4.5, indicating that the curvilinear negative 

association between %A (%B) and C should have the concave upwards 

(Fig. 11 , top panels).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Association between C and %A(%B, %C), upper panels; and histograms of %A, %B, and %C (lower panels). The figure relates to the 

equation %A + %B + %C = 100, see text. The ranges were, A 2.00 – 2.02; B 3.00 – 3.03; and C 1 – 100, n = 200 (uniformly distributed random 

numbers). 

As shown in Fig. 11 (top panels), C decreases as %A (%B) increase, but 

the C - decrease per unit  increase in %A (%B) attenuates with increasing 

%A (%B). In contrast, increasing values of C is associated with 

increasing values of %C (Fig. 11, top panel, right). Additionally, the C - 

increase per unit increase in %C rises with increasing %C values. 

Accordingly, the %A and %B distributions are positively skewed, 

whereas the %C histogram has negative skewness (Fig.11, lower panels). 

This example shows that, in the current context, alterations in C values 

are crucial to explain skewness of the relative amounts, i.e. a broad 

(narrow) range of C gives high (low) skewness of %C (%A, %B). 

Furthermore, high (low) variability of C also promotes strong (weak) 

correlations between %A and %B. In the current example, we may apply 

both the equation of a straight line, and the relationship between S and 

percentages of S, to explain correlations between the relative amounts. 

Ranges, Skewness, and Correlations [23] 

It would appear, accordingly, that ranges of the variables are crucial for 

obtaining strong correlations between percentages of three variables, and 

for making skewness of the relative amounts. Skewness of the 

percentages may decrease appreciably if gradually narrowing the C- 

range, and so will strength of the %A vs. %B correlation. We here show 

the outcome with narrowing to C 1 - 2.  First, we arbitrarily choose ranges 

of A to be 2.00 - 2.02, B 3.00 - 3.03, and C 1 - 100. We found skewness of  

%A, %B, and %C to be 2.10, 2.10, and -2.10, respectively, i.e. high 

positive skewness of %A and %B, and high negative skewness of %C. 

There was a perfect positive correlation (rho =1.000) between %A and 

%B, and a perfect negative (rho = -1.000) association between %C and 

%A (%B).  However, with C range narrowed to 1-2, skewness of %A, 

%B, and %C had attenuated to 0.21, 0.20, and -0.20.  However, the strong 

positive %A vs. %B correlation prevailed (rho = 1.000, Fig. 12, left 

panel), and also the strong negative association between %C and %A 

(%B), rho = -1.000; -1.000), p<0.01 for all, n = 200. Quartiles of 

the %A, %B, and %C distributions were 29.56, 30.60, 31.96; 44.32, 

45.96, 47.86; 20.18, 23.38, 26.13, respectively. Thus, in this case, the 

strong positive %A vs. %B correlation is not well explained by very 

high %C values, with reference to the equation %B = -%A + (100 - %C), 

see above. Alternatively, we may consider fractions of S: Af = A/(A + B 

+ C) = 1/( 1 + B/A + C/A). Since A and B are close to be constants, we 

may write Af = 1/(k + C/A) where k = 1 + B/A, which is close to a 

constant.  A similar reasoning goes for Bf = B/(A + B + C) = 1/( 1 + A/B 

+ C/B) = 1/(t + C/B), where t = 1 + A/B. Thus, Af (and Bf) should 

decrease as C increases, thereby explaining the positive association 

between %A and %B. Furthermore, Cf = C/(A + B + C) = 1/[1 + (A + 

B)/C], which may be approximated to Cf = 1/(1 + u/C] where u = A + B, 

i.e. near a constant.  Thus, Cf increases as C goes from lowest to highest 

value. The relationships between C and %A (%B,  %C) explain the 

correlations between the percentages.  

 



J. Nutrition and Food Processing                                                                                                                                                               Copy rights@ Arne Torbjørn Høstmark. 

 

 
Auctores Publishing LLC – Volume 5(1)-077 www.auctoresonline.org  
ISSN: 2637-8914   Page 11 of 18 

 

 

 

 

 

 

 

 

Figure 12: Association between %A and %B), and histogram of %C. The figure relates to the equation %A + %B + %C = 100, see text.  Ranges 

were A 2.00 – 2.02; B 3.00 – 3.03; and C 1 – 2; rho = -1.000, p<0.01, n = 200 (uniformly distributed random numbers).  

In brief: With three positive scale variables (A, B, C), two of which (A, 

B) having narrow ranges relative to the C-range, we might expect high 

negative skewness of %C, high positive skewness of %A and % B, strong 

positive %A vs. %B correlation, and a strong negative  correlation 

between %C and %A (%B). With decreasing C - variability, we should 

find attenuated skewness of %A, %B, and %C, and decreased strength of 

the correlation between %A and %B.  

We carried out 10 repeats [23] of a condition expected to give a near- 

symmetrical distribution of percentages of A, B, and C: i.e. A and B 0.10 

- 0.15; C 9 - 10 (n = 200 in each repeat). Coefficients of variation (CV) 

were for rho (%A vs. %B): 119.6%; for Skewness of %C: - 352.5%; for 

Q3 of %C: 0.02%. Thus, Q3 of the %C histogram had low CV, as 

compared with CV of skewness of the %C histogram.  

We did some experiments to examine how skewness relate to the 

correlation between %A, %B, and %C, as obtained by changing A; B, and 

C ranges in many ways [23]. The results are summarized in Fig. 13, where 

skewness of %C is plotted against Spearman’s rho for the association 

between %A and %B. Each of the 49 points represents 200 random 

number “cases”, computed with particular ranges for A, B, and C. The 

relationship between skewness of %C and correlation between %A and 

%B seemed like a mirror image of a sigmoidal scatter of points (Fig. 13). 

Thus, with increasing negative (positive) skewness we observed a 

progressive improvement of the positive (negative) correlation between 

percentages of A and B. Similar relationships were obtained when 

skewness of the distribution of % A (%B) was plotted against rho for the 

correlation between %B vs. %C (%A vs. %C), not shown. We emphasize  

that we had to use narrow ranges of A and B, and broad C-range to obtain 

the high positive %A vs. %B correlations (Fig.13, left part of the 

scatterplot).  Similarly, to make strong negative correlations between %A 

and %B (Fig.13, right part), we used narrow ranges of A and C (or of B 

and C), and broad range of B (A). The strong negative %A vs. %B 

association, found with a very narrow C-range, was not, however, 

accompanied with high positive %C skewness, as discussed above. In this 

latter case, we have a situation where one of the variables approaches a 

fixed number. Thus, we have close to a two-variable condition, making 

the remaining two variables relating inversely. 

The figure illustrates that we may achieve the Turning Point when 

skewness of the %C distribution approaches zero. It would appear, that 

when skewness of the %C distribution approaches zero (symmetrical 

histogram), then rho (%A vs. %B) varies greatly in response to minor 

changes in skewness of %C. Thus, close to a symmetrical distribution of 

the histogram of %C, the correlation between percentages of the two 

remaining variables (A and B) is very sensitive to changes in skewness of 

%C. On the other hand, with very high (positive or negative) skewness of 

the %C distribution, only small changes in the size of Spearman’s rho for 

the %A vs. %B correlation are allowed. Thus, in particular cases, 

skewness of the %C distribution seems to relate to the correlation between 

A (B) percentages of S. However, as pointed out above, we may achieve 

strong negative correlations without any accompanying major skewness. 

Indeed, ranges of the variables seem to be the crucial force both for 

making skewness and correlations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Association between skewness of the %C histogram and Spearman’s rho for the correlation between percentages of the remaining two 

variables (A and B). The figure relates to the equation %A + %B + %C =100, or %B = - %A + (100 - %C), see text. We made the figure using 

uniformly distributed random numbers of A, B, and C. Each of the 49 points represents 200 random number “cases”, computed with particular 

ranges for A, B, and C.  From Høstmark 2019, JNFP. 
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More than three variables 

When computing fractions (percentages) in the present work, we used 

sum (S) of two or three variables. We may raise the question of what 

happens to the association between e.g. %A and % B if the denominator 

(S) includes more than 3 variables. In general, with a large number of 

positive scale variables (A, B, C……..), their sum is S = A + B + C…., 

giving the equation:  %A + %B + %C + ……= 100, This equation may 

be simplified to apparently involve 3 variables: %A + %B + %R = 100, if 

R is the sum of all variables, except A and B. With reference to the 

outcome presented above, we should expect that %A and %B correlate 

positively, if both of these latter variables have very narrow ranges 

relative to R. In fact, the association should prevail if broadening the R-

range. Previous computer experiments were in favor of this reasoning 

[23]. 

Computer test: Above, we made sum of random numbers representing 

OA, AA, and EPA only; their ranges being 1- 9, 0.3 - 0.4, and 0.1 - 0.2, 

respectively. In a repeat of this experiment, we obtained %AA’ vs. 

%EPA’: rho = 0.867, p<0.001, n =200.  Equation of regression line was 

%AA’ = 1.78 (0.07) · %EPA’ + 0.98 (0.15). We then included altogether 

12 fatty acids in the denominator, i.e. the total range of the fatty acids was 

increased to 3 -15. The %AA’ vs. %EPA’ association did not change 

much: rho = 0.856, p<0.001, n =200. Equation of regression line changed 

to be %AA’ = 1.96 (0.09) · %EPA’ + 0.85 (0.18). This outcome seems in 

favor of using the “three-variable approach”.  

Intended Ranges and Distribution Dependent Correlations: Examples 

from Physiology 

In the first part of this article, we presented some general considerations 

of how percentages of the same sum should relate, and showed computer 

experiments to support the reasoning. Some of the examples illustrated 

mathematical points, without necessarily relating to physiology. Below, 

we show some examples from physiology, where “Intended Ranges” 

could represent evolutionary selections, serving to achieve that relative 

amounts must become positively or negatively associated, 

mathematically [28].  

In biology, we may encounter ranges presumably representing 

evolutionary selection. For example, body temperature, weight, height, 

heart rate, blood pressure, organ sizes, and amounts of many tissue and 

blood factors, such as electrolytes, glucose, lipoproteins, and fatty acids 

seem to exist within particular ranges. The spread of a physiological 

variable could mean that nature failed when trying to hit the target (e.g. a 

certain level of a blood or tissue variable). In laboratory medicine, we 

regularly define the “normal range” of a variable as the mean value ± 2SD, 

based upon data found in healthy subjects. A complete different view is 

that ranges in many contexts depend on evolutionary selection.   

Thus, variation is a central concept. To assess variability, we regularly 

use the range of the variable, as well as the interquartile range, and 

standard deviation. In general, we may categorize the spread of a 

biological variable as true biological, pre-analytic, and analytic. 

Alternatively, we may divide into common cause variation and assignable 

variation [31], i.e. unexpected large variation; caused by for example 

computer crash, corona virus infection, or problems with the supply of 

water and food.  We should try to avoid these negative types of variation.  

In contrast to this, some types of biological variability could represent 

wanted variation, appearing during evolutionary selection. This suggested 

biologically intended, advantageous variation should go from lower to 

upper limits, developed through evolutionary selection. We suggest that 

evolution possibly might have selected the necessary regulatory 

mechanisms to achieve the intended limits as well, for example effected 

through synthesis and metabolic regulation of key enzymes. Notably, the 

regulatory processes governing these limits would be subject to common 

cause variation. We hypothesize that ranges of fatty acids in tissues and 

blood, as well as ranges of white blood cell counts, could be examples of 

intended ranges in biology (vide infra).  

As shown mathematically in the first part of this article, fractions of 

variables might correlate positively or negatively, on the conditions that 

their concentrations exist within particular ranges. In physiology, ranges 

could be intended ones. Conceivably, the measured ranges will also 

reflect common cause variability.  

The many causes of error could make it hard to detect and appreciate the 

suggested biological, intended variability, e.g. of particular fatty acid 

concentrations, and frequency distributions and scatterplots should 

regularly be observed, to find outliers. To detect the suggested true, 

intended ranges, we should have very low external variability. 

Nevertheless, DDC should exist, if the variables in question do have the 

required concentration ranges. We emphasize that the chicken population 

referred to below, was very homogeneous, genetically and 

environmentally, thereby offering an excellent opportunity to evaluate 

how the suggested intended ranges might influence associations between 

relative amounts of fatty acids.  

Brief Synopsis of Previous Articles Related to Distribution Dependent 

Correlations 

From the papers below, we present some main results related to DDC: 

# 1: Høstmark AT, Haug A (2018) The Fatty acid Distribution per se 

Explains Why Percentages of Eicosapentaenoic Acid (20:5 n3) and 

Arachidonic Acid (20:4 n6) are Positively Associated; a Novel Regulatory 

Mechanism? J Nutr Diet Suppl 2 (1):103  

Since EPA and AA are metabolic antagonists, in this paper we raised the 

question of whether their relative amounts might correlate. It turned out 

that %AA and %EPA were positively related, as observed in chicken 

breast muscle lipids [14], raising the question of how to explain the 

association. To circumvent the numerous physiological regulatory 

mechanisms, I started using random numbers in lieu of the true values, 

however sampled with the true ranges of AA and EPA. Surprising at the 

time, the correlation outcomes were similar with these random numbers 

and with the true values [14]. Furthermore, even slight alterations of the 

random number ranges had major effects upon the correlation outcomes, 

as documented by appreciably altered scatterplots and correlation 

coefficients. These findings suggested the concept of Distribution 

Dependent Regulation (Correlations). The finding that particular ranges 

(distributions) of variables were crucial for making strong correlations 

between their relative amounts seemed at the time to be a novel regulatory 

mechanism.  

# 2: Høstmark AT (2019) Associations Between %AA (20:4 n6) and 

Percentages of EPA (20:5 n3), DPA (22:5 n3), and DHA (22:6 n3) Are 

Distribution Dependent in Breast Muscle Lipids of Chickens. J Nutr Diet 

Suppl 3(1):103 

Since the ranges of DPA (22:5 n3) and DHA (22:6 n3) are narrow, we 

investigated whether their relative amounts might be positively associated 

with %AA, and if the ranges could explain the correlation outcome. As 

expected, corresponding scatterplots (correlation coefficients) were 

generally very similar, irrespective of using true (measured) values of the 

fatty acids, or random numbers, if we generated the random numbers with 

the true ranges. However, altering the ranges had appreciable effects upon 

the associations. Thus, narrowing (broadening) the ranges improved 

(made poorer) the scatterplots and correlation coefficients.  

To explain the correlation outcome, we first utilized the equation of a 

straight line (y = ax + b). Ranges of DPA, DHA, and AA were narrow 

compared with range of the sum of the remaining fatty acids (R).  Thus, 

AA had range 0.25 - 0.42, DPA 0.21-0.43, and DHA 0.11-0.32 g/kg. In 
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contrast, R had range 5 - 15 g/kg.  Therefore, the equation %AA = -

%DHA + (100 - %R) would approach %AA = % DHA, due to the high 

values of %R. Quartiles of the %R distribution were 93.1, 95.0, and 

96.0%, respectively. Hence, %AA and %DHA should correlate 

positively. Using random numbers with the true ranges, we found rho = 

0.599 for %EPA’ vs. %AA’ (the substitute EPA and AA variables are 

named EPA’ and AA’). %R’ vs. %EPA’ (%AA’): rho = -0.858 (-0.919), 

p<0.01 for all, n =200. These results seems to support our previous finding 

that %AA correlated positively with %EPA, because of the particular 

ranges. 

# 3: Høstmark AT (2019) Associations between Percentages of Scale 

Variables, as Related to Distributions. J Nutr Diet Suppl 3 (1):104. 

This article summarizes some of my opinions at the time, concerning 

DDC. For example, I suggested this rule : “ With 3 scale variables, two of 

which having low-number distribution as compared with the third 

variable, we might expect a positive association between percentages of 

the low-number variables, and a negative association between percentage 

of the high-number variable and percentage of each of the low-number 

variables.” Another rule was:  “Distributions of 3 scale variables can be 

manipulated so as to obtain a Turning Point, i.e. a situation where a 

positive (negative) association between percentages of two of them turns 

to become negative (positive)”. Since the explanation of the rules was 

preliminary at the time, we tried to improve the rules in the succeeding 

articles  

# 4: Høstmark AT, Haug A (2019) High Variability of Oleic Acid (OA, 

18:1 c9) improves the Positive Association between %EPA (20:5 n3) 

and %AA (20:4 n6). J Nutr Diet Suppl 3 (1):106.  

# 5: Høstmark AT, Haug A (2019) The inverse association between 

relative abundances of oleic acid and arachidonic acid: a case of 

distribution dependent regulation? Lipids in Heath and Disease 18:123 

In these two papers, we discuss further, how the inverse %OA vs %AA 

association observed in chicken muscle, may be explained, as well as how 

oleic acid (OA) might influence the positive correlation between %AA 

vs. %EPA. We continued to use random numbers of OA (marked OA’) in 

lieu of the measured values of the fatty acid. First, we used the true OA-

range, and then gradually altered the range. Increasing (decreasing) the 

OA’- range, in computer experiments, towards higher (lower) values 

improved (made poorer) the association between relative amounts of AA’ 

and EPA’. In general, we obtained similar results (scatterplots and 

correlation coefficients) with the true values of the fatty acids, and with 

random numbers in lieu of the true values, if the random numbers had the 

true ranges [17]. Furthermore, we found similar %AA vs. %EPA 

correlations, as well as correlations between %OA and %AA (%EPA) - 

irrespective of using sum of all fatty acids in the denominator when 

computing the percentages, or the sum of AA, EPA, and OA only.  

We noticed that ranges of AA, EPA, and OA differed appreciably, being 

0.25 - 0.42; 0.13 - 0.24; and 1.04 - 8.56 g/kg, respectively. Corresponding 

coefficients of variation (CV) were 9.7, 11.1, and 43.9%.  Using substitute 

random numbers instead of the true values, we broadened the OA’ range 

towards higher values (Fig. 14). This increase in OA’ variability greatly 

improved the positive correlation between %AA’ and %EPA’ (left panel), 

and was accompanied by increasingly higher values of %OA’ (right 

panel). Interestingly, approximately at the physiological maximum value 

of OA (about 9 g/kg), the correlation coefficient – as well as the third 

quartile of the %OA distribution - levelled off rapidly. 

 

 

 

 

 

 

 

 

 

 

Figure 14:  Effect of increasing the OA’-range towards higher values upon the %AA’ vs. %EPA’ correlation coefficients (left panel), and on the 

third quartile of the %OA’ distribution (right panel), see text.  Note that we omitted the random number mark (OA’) when making this figure. From 

Høstmark AT, Haug A (2019),  

J Nutr Diet Suppl 3:106 

Below, we extend the explanation given previously [17] of the correlation 

outcome. Thus, we have a condition from physiology where two variables 

(i.e. AA and EPA) are closer to fixed numbers than a third variable (OA). 

We utilize the equation AA + EPA + OA = S, i.e.  %AA + %EPA + %OA 

= 100, or % AA = -%EPA + (100 -%OA). With increasingly higher %OA’ 

values, caused by broadening the OA’-range towards higher values, we 

should move towards an increasingly improved %AA’ vs. % EPA’ 

association, as discussed in the mathematical part of this article.  

Rewriting the equation to %OA’ = -%AA’ + (100 - %EPA’), we might 

consider two approximations, to simplify the equation: 1) Thinking that 

the low EPA’ (%EPA’) values (as compared with OA’) were approaching 

zero, thereby making the equation approach %OA’ = -%AA’ + 100, i.e. 

%OA’ should relate negatively to %AA’. 2) The narrow EPA range 

would make (100 - % EPA) approach a constant value (k). In that case, 

the equation would be %OA = -%AA + k, which would give a negative 

correlation between %OA and %AA, as well. Similarly, we may rewrite 

the equation above to be %OA’ = -%EPA’ + (100 - %AA’). Using the 

above simplifications, we would have %OA’ = -%EPA’ + 100, and %OA’ 

= -%EPA’ + k. In both cases, we should obtain a negative association 

between %OA’ and %EPA’. In a computer test, we found that the 

following equations of  regression  lines:1)  %AA’ = 1.6 · %EPA + 0.7; 

2) %OA’ =  -2.6·%EPA’ + 99.3;and 3) %OA’ = -1.5·%AA’ + 99.3. For 

the present purpose, we omit SE values in the equations.  

Alternatively, we may consider what happens to the AA’-, EPA’- , and 

OA’- fractions of S (S = OA’ + AA’ + EPA’), as OA’ goes from the 

lowest to the highest value within the OA’ range. The AA' fraction is 

AA’/(AA’ + EPA’ + OA’) = 1/(1 + EPA’/AA’ + OA’/AA’), i.e. the AA’ 

fraction (percentage) is governed by the EPA’/AA’ ratio, and by the 
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OA’/AA’ ratio. The EPA’/AA’ ratio has low variability as compared with 

the OA’/AA ‘ratio. The former one goes from 0.13/0.42 = 0.3 to 0.24/0.25 

= 1.0, and the latter from 1.04/0.42 = 2.5 to 8.56/0.25 = 34.2. Accordingly, 

the EPA’/AA’ ratio should have a much lower impact than the OA’/AA’ 

ratio to change the AA’ fraction. Additionally, the OA’/AA’ ratio is 

mainly influenced by OA’. Therefore, OA’ is the main governor of the 

AA’ - fraction (percentage), which should decrease as OA’ increases from 

the lowest to the highest value (Fig. 15). A similar reasoning goes for the 

EPA’ – percentage of S.  Thus, %AA’ should correlate positively with 

%EPA’, since both fractions decrease as OA’ increases from lowest to 

highest value. As seen from the formulas, the decrease in %AA’ and 

%EPA’ per unit increase in OA’, should level off at increasing OA values, 

making the %AA’ (%EPA’) vs. OA’ scatterplot to have the concave 

upwards.  

The OA’ fraction of S is OA’/(AA’ + EPA’ + OA’) = 1/[1 + (AA’ + 

EPA’)/OA’].  This fraction should decrease as (AA’ + EPA’) increases, 

and increase as OA goes from lowest to highest value. However, the 

denominator should have a greater impact than the numerator on the (AA’ 

+ EPA’)/OA’ ratio, making the OA’ fraction (percentage) to increase as 

OA’ goes from lowest to highest value. In addition, the %OA’ vs. OA’ 

association should be curvilinear with the concave downwards, as seen 

from the definition of the OA’ fraction.  Interestingly, when approaching 

the measured, upper OA’ level (i.e. about 9 g/kg in chicken breast muscle, 

Fig. 15), we apparently should expect only a small further decrease in 

%AA’ and %EPA’, and a weak further increase in %OA’, in response to 

increasing the OA’ range towards higher values.  Computer experiments 

verified this suggestion (not shown). The associations with OA’ appear to 

be the basic explanation of the positive %AA’ vs. %EPA’ association, and 

the negative %OA’ vs. %AA’ (%EPA’) correlation. Since OA’ is 

positively related to %OA’, but negatively to %AA’ and %EPA’, it 

follows that %OA’ should relate negatively to %AA’ (%EPA’). %AA’ 

and %EPA’’ should be positively correlated, since both relate negatively 

to OA’. In a computer test, we found Spearman’s rho = -0.946 (-0.976) 

for %OA’ vs. %AA’ (%EPA); %OA’ vs. OA’, rho = 0.964, p<0.01, n 

=200, Fig.  , right panel); p<0.01 for all, n = 200. 

 

 

 

 

 

 

 

 

Figure 15:  Relationship between relative amounts of AA (EPA, OA) and OA, estimated by random number substitutes (marked EPA’, AA’, and 

OA’), see text.  We generated uniformly distributed random numbers (n =200) with the true ranges, i.e. for EPA, 0.13 - 0.24 g/kg; for AA, 0.25 - 0.42 

g/kg; and for OA, 1.04 - 8.56 g/kg. Spearman’s rho was -0.928 (left), -0.936 (middle), and 0.964 (right). 

 
Accordingly, ranges (distributions) of variables such as OA, AA, and 

EPA seem to govern associations between their relative amounts. 

Accordingly, some ranges, such as those of some fatty acids, could be 

examples of Intended Ranges, i.e. ranges arising through evolutionary 

selection, possibly selected to ensure that associations between relative 

amounts must become either positive or negative, mathematically. For 

this phenomenon, I previously suggested the name Distribution 

Dependent Correlations (- Regulation). Possibly, the suggested selection 

serves to improve the balance between metabolites, as commented 

further, below. 

# 6: Høstmark AT (2019) Body Fatty Acids, Nutrition, and Health: Is 

Skewness of Distributions a Mediator of Correlations? JNFP 2 (1); DOI: 

10.31579/2637-8914/009 

In this paper, we raised the question of 1) how skewness of relative 

amounts of three scale variables (A, B, C) is brought about, and 2) 

whether skewness of the %A, %B, and %C histograms relate to 

correlation between the relative amounts. Particular focus was upon the 

relationship between %A and %B in response to altering the C - range. 

We succeeded in making a scatterplot of %C skewness (abscissa) against 

rho for %A vs %B association (ordinate), resembling a mirror image of a 

sigmoidal curve, as discussed in the first part of this review. 

 # 7: Høstmark AT, Haug A (2019) Alpha Linolenic Acid Variability 

Influences the Positive Association between %Eicosapentaenoic Acid and 

% Arachidonic Acid in Chicken Lipids. JNFP 2 (2); DOI: 10.31579/2637-

8914/016 

The fact that ALA (18:3 n3) is precursor of EPA (20:5 n3) and DHA (22:6 

n3) [2] could at least partly explain alleged health effects. In chicken 

breast muscle, we observed that the range of ALA (i.e. 0.12 - 2.40 g/kg) 

was appreciably broader than the ranges of AA (0.25 - 0.42 g/kg) and 

EPA (0.13-0.24 g/kg); coefficients of variation being 60.4, 9.4, and 

11.7%, respectively [29]. Thus, again we have two variables (AA and 

EPA) with narrow ranges relative to a third one (ALA), making the 

suggestion that %AA and %EPA should correlate positively, whereas 

%ALA should relate negatively to %AA (%EPA). Additionally, we 

should expect that ranges would influence skewness of the %ALA 

distribution. Indeed, with true values of the fatty acids, and with substitute 

random numbers, generated within the true ranges, the correlation 

outcomes were similar, as predicted [29].  

 # 8: Høstmark AT, Haug A (2020) Relative Amounts of Eicosanoid and 

Docosanoid Precursor Fatty Acids Are Positively Associated: A 

Distribution Dependent Regulation 

In this work, we investigated whether relative amounts of eicosanoid and 

docosanoid precursors did correlate positively. The study seemed to 

verify this hypothesis. Again, the ranges of the variables seemed crucial 

to explain the correlation outcomes. Thus, we obtained qualitatively 

similar corresponding results with true values, and when using substitute, 

random numbers in lieu of the fatty acids, on the condition that the random 

numbers had the true ranges. Additionally, when we hypothetically 

altered the ranges in computer experiments, we observed appreciable 

changes in the strength of the associations. Thus, there seems to be 

distribution dependent positive associations between eicosanoid and 
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docosanoid fatty acid precursor percentages, possibly serving to ensure 

balance between effects of important regulatory molecules in physiology.  

 # 9: Høstmark AT, Haug A (2020) Associations between %AA (20:4 n6) 

and Relative Amounts of Other Body Fatty Acids. JNFP 3(2) (2); 

DOI:10.31579/2637-8914/024 

In chicken muscle, we identified two groups of fatty acids: Group 1) with 

relative amounts correlating negatively with %AA, and Group 2) with 

relative amounts correlating positively with %AA (Table 1). With the 

positive correlations, but not with the negative ones, we obtained 

qualitatively similar scatterplots using true and random numbers, if 

generated with the true ranges. We suggested that the apparent 

discrepancy possibly could relate to differences in skewness of the 

concentration distribution (Table 1). Interestingly, most of Group 2 fatty 

acids were eicosanoid or docosanoid precursors. The particular ranges of 

the fatty acid seemed in general to explain the correlation outcome, in 

support of the concept of Distribution Dependent Correlations. 

  Absolute amounts (g/kg) Min Max Mean SD Skewness CV (%) 

Total SUM 3.04 14.69 5.21 1.67 2.29 32.1 

Group 1           18:3 n3 0.12 2.40 0.53 0.32 2.50 60.4 

                     18:1 c9 1.04 8.56 2.44 1.07 2.29 43.9 

                     16:1 c9 0.03 0.78 0.18 0.11 2.27 61.1 

                     18:3 n6 0.00 0.02 0.01 0.00 1.70 44.8 

Sum of Group 1 fatty acids  1.20 11.77 3.16 1.50 2.33 47.5 

Group 2           20:3 n6 0.06 0.11 0.08 0.01 0.70 11.0 

                     20:3 n3 0.04 0.09 0.05 0.01 1.06 12.2 

                     20:2 n6 0.04 0.06 0.05 0.01 0.46 13.7 

                     18:0 0.65 1.70 0.89 0.16 1.69 18.7 

                     22:5 n3 0.21 0.43 0.31 0.04 0.52 13.2 

                     20:4 n6 0.25 0.42 0.31 0.03 0.66   9.4 

                     22:6 n3 0.11 0.32 0.19 0.04 0.76 21.2 

                     20:5 n3 0.13 0.24 0.18 0.02 -0.16 11.7 

Sum of Group 2 fatty acids  1.64  2.93 2.05 0.22 0.90 10.7 

Relative amounts (%)       

Group 1          18:3 n3 3.91 16.34 9.44 2.40 0.17 25.4 

                    18:1 c9 34.06 58.28 45.58 5.00 0.02 11.0 

                    16:1 c9 1.12 6.82 3.23 0.95 0.53 29.5 

                    18:3 n6 0.09 0.22 0.15 0.03 0.19 17.6 

Group 2         20:3 n6 0.62 2.45 1.55 0.36 0.02 23.3 

                   20:3 n3 0.40 1.86 1.00 0.26 0.42 25.7 

                   20:2 n6 0.40 1.53 0.92 0.21 0.26 23.1 

                   18:0 11.60 24.68 17.73 2.71 0.02 15.2 

                   22:5 n3 2.07 11.00 6.36 1.64 0.26 25.9 

                   20:4 n6 2.25 11.02 6.35 1.53 0.05 24.1 

                   22:6 n3 1.24 7.70 3.95 1.25 0.41 31.7 

                   20:5 n3 1.32 5.70 3.73 0.91 -0.00 24.5 

Table 1.  Absolute (g/kg) and relative (%) amounts of fatty acids in chicken breast muscle lipids (n = 163); min (max) values, means, SD, skewness, 

and coefficient of variation (CV), categorized into Group 1 and Group 2, see text. Note that some values appear as zero due to the number of 

decimals. Standard error of Skewness: 0.19. From Høstmark AT, Haug A, JNFP, 3(2), 2020.  

 

# 10: Høstmark AT, Haug A (2020) Distribution Dependent and Cluster 

Regulation of Associations between Body Fatty Acid Percentages, as 

observed in Chicken. JNFP 3(2); DOI:10.31579/2637-8914/025 

We here tried to explain further our previous finding in chicken muscle, 

i.e. the apparent existence of two groups of fatty acids: Group 1) with 

relative amounts correlating negatively with %AA (20:4 n6), and Group 

2) with relative amounts correlating positively with %AA. Within each of 

the two groups, we found positive correlations between the fatty acid 

percentages. It follows that, percentages of Group 1 fatty acids correlated 

negatively with percentages of Group 2 fatty acids. Furthermore, with 

random numbers in lieu of the true values of Group 2 fatty acids, however  

 

 

using the true ranges, we were able to reproduce the positive correlations 

found with true values. In contrast, with random numbers we did not 

succeed in reproducing all of the negative correlations between Group 1 

and Group 2 fatty acid percentages. We then observed that the absolute 

amounts (g/kg) of fatty acids in Group 1 correlated positively and strongly 

(r > 0.9), suggesting a coordinated regulation of these fatty acids (Table 

2). Thus, Group 1 fatty acids seemed to be a cluster of fatty acids. 

“Random number cluster percentage” showed nice inverse associations 

with random number Group 2 fatty acid percentages, like the outcome 

observed with the true values, suggesting that associations between fatty 

acid percentages are not only caused by their concentration distributions, 

but also by cluster regulation.  
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Pearson’s r - values 
Fatty acid 18:3 n3 18:1 c9 16:1 c9 18:3 n6 

18:3 n3             1    

18:1 c9 0.988   1   

16:1 c9 0.932 0.953   1  

18:3 n6 0.943 0.949 0.913       1 

Spearman’s rho - values 
                       Fatty acid 18:3 n3 18:1 c9 16:1 c9      18:3 n6 

18:3 n3             1    

18:1 c9 0.984   1   

16:1 c9 0.904 0.926   1  

18:3 n6 0.914 0.923 0.865        1 

Table 2. Correlations between absolute amounts (g/kg) of Group 1 fatty acids. All correlation coefficients are with p < 0.01, n = 163. 

 Group 1 Group 2 

 

Place on the scale 

      Generally  

 HIGH NUMBERS 

     

 LOW NUMBERS 

Variability           HIGH          LOW 

Skewness, absolute  values      HIGH positive                 LOW      

Skewness, relative  values           LOW          LOW 

Correlations, within - group percentages        POSITIVE       POSITIVE 

Correlations, between – group  percentages       NEGATIVE       NEGATIVE 

Cluster regulation            YES             NO 

Eicosanoid/docosanoid precursors             NO            YES 

Table 3.  Characteristics of Group 1 and Group 2 fatty acids in chicken breast muscle 

 # 11: Høstmark AT (2020) Association between Relative Amounts of 

White Blood Cell Counts: a Case of Distribution Dependent Correlations 

JNFP 3 (2); DOI:10.31579/2637-8914/028 

Since counts of segmented neutrophil leukocytes (N) and lymphocytes 

(L) are normally much higher than sum of the remaining (R) white blood 

cells (WBC), we suggested that %N might possibly relate to %L. Thus, 

with random numbers, sampled in lieu of reported WBC subgroup values, 

however using the true (reported) mean ± SD values, we were able to 

show that %N’ and %L correlated negatively, in both sexes, i.e. 

Spearman’s rho = -0.9, p <0.01, n = 200.  We found qualitatively similar 

results using within-person data, and between-person data. However, 

altering distributions (ranges) of WBC subgroups changed the correlation 

outcome, as evaluated by scatterplots and correlation coefficients. 

Decreasing (increasing) values of %R improved (made poorer) the 

negative association between %N and %L. Accordingly, the observed 

negative association between %N and %L seems to be a case of 

Distribution Dependent Correlations.  Thus, directing the counts of WBC 

subgroup to particular places on the scale could have major effects to 

change associations between their relative amounts.  

# 12: Høstmark at (2020) Distribution dependent correlations: a 

mathematical principle utilized in physiology, or correlation bias? Int J 

Res - GRANTHAALAYAH, 8(11), 63-75. 

https://doi.org/10.29121/granthaa layah.v8.i11.2020.1470                                                                                                                                                                                                                                    

The aim of this work was to elucidate further, how correlations between 

percentages of the same sum arise. We extended and systematized our 

previous theoretical considerations, and carried out new sets of computer 

experiments to test the hypotheses. The results were in support of the idea 

that true, within-person distributions of the variables are crucial for 

obtaining positive or negative correlations between their relative amounts. 

# 13: Høstmark A T, Haug A (2021) Studies to Explain Associations 

between Relative Amounts of Body Fatty Acids JNFP 4(1); 

DOI:10.31579/2637-8914/039 

The purpose of this work was to explore in more detail the concept of 

Distribution Dependent Correlations (DDC). We did many computer 

experiments to establish that, with three positive scale variables, two of 

which (A, B) having very low variability relative to a third one (R), we 

should expect a strong positive association between percent A and percent 

B, and that the B/A ratio could estimate slope of the regression line. 

Furthermore, we should expect a negative relationship between %R and 

%A (%B). This correlation outcome did occur wherever we placed A and 

B on the positive scale. On the other hand, if A and B have high numbers 

and broad ranges relative to R, then %A should relate inversely to %B. 

We additionally showed computer experiments (and explained) how 

differences in ranges might give skewness of the relative amounts. Thus, 

ranges of A, B, and R seem to govern associations between their relative 

amounts, and alterations in the ranges have appreciable effects to change 

the associations, suggesting that evolution might utilize DDC to regulate 

metabolism. 

# 14: Høstmark AT. Haug A (2021) Studies to Explain why Percentages 

of Eicosanoid Precursor Fatty Acids Are Positively Associated in Chicken 

Lipids. J Food Sci & Nutri: JFSN-112.DOI: 

10.46715/jfsn2021.01.1000112 

Previously, we reported that relative amounts of eicosanoid precursor 

fatty acids were positively associated in breast muscle lipids of chickens. 

The concentration ranges seemed to largely explain e.g. the positive 

association between % AA and % EPA. Here we tried to explain such 

correlations in more detail. We focused upon EPA, AA, DGLA, and 

DHA. Thus, EPA + AA + DGLA + DHA + R = S, where R is sum of the 

remaining fatty acids, and S is sum of all. Since amount of these four fatty 

acids is small as compared with S, we anticipated that their percentages 

related negatively to S, as corroborated by Spearman’s rho values for S 

vs. %EPA, %AA, %DGLA, and %DHA, i.e.  -0.867, -0.913, - 0.886, and 

-0.730, respectively. However, also RANDOM numbers, generated with 

the true ranges of the fatty acids, gave similar correlations, i.e.: - 0.919, -

0.937, -0.910, and - 0.838. Accordingly, all precursor percentages 

correlated positively. A narrowing (broadening) of concentration ranges 
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strongly improved (made poorer) correlations between percentages. Thus, 

eicosanoid (docosanoid) fatty acid precursor percentages must be 

positively associated as a mathematical consequence of their particular 

concentration distributions. Again, the results are in favor of the concept 

of Distribution Dependent Correlations, possibly representing an 

evolutionary regulatory mechanism, where variation in ranges could 

improve the balance between eicosanoids/docosanoids, mathematically. 

# 15: Høstmark AT (2021) Intended Ranges and Correlations between 

Percentages of Variables Like Oleic Acid, Eicosapentaenoic Acid, and 

Arachidonic Acid. Foods 2021, 10, 1012. https://doi.org/10.3390/ 

foods10051012  

In chicken muscle, we previously showed that ranges of OA, AA, and 

EPA might explain why %OA was inversely related to %AA, and that 

%EPA correlated positively with %AA. We here tried to clarify further, 

how ranges of the fatty acids could make strong associations between 

their relative amounts, utilizing published data from chicken muscle and 

human sera. We generated random number variables (OA’, AA’, EPA’) 

in lieu of the true variables, and studied effects of altering their ranges 

upon scatterplots of %OA’ vs. %AA’ (%EPA’), and %AA’ vs. %EPA’. 

To explain the results, we first applied the equation OA’ + AA’ + EPA’ 

= S, i.e. %OA’ + %AA’ + %EPA’ =100.  Next, we considered how the 

OA’ (AA’, EPA’) fractions of S related to S. Increasing the OA’ range 

towards higher values improved the positive association between %AA’ 

and %EPA’. Thus, broadening the OA-range, presumably obtained with 

increased intake of OA, could improve the positive associations between 

relative amounts of eicosanoid precursors, raising the question of whether 

“intended ranges” of some fatty acids could represent a case of 

evolutionary selection, to achieve balance between eicosanoids.  In this 

context, we also refer to the supplementary and more detailed comments, 

related to Paper # 4 and Paper # 5, above. 

Conclusions 

These studies seem to suggest that the particular distributions 

(range/place on the scale/spread) of variables such as fatty acids will 

determine whether their relative amounts are positively or negatively 

associated, or not correlated at all.  

Suggested rules pertaining to DDC:  

1. With 3 positive scale variables (A, B, C) , two of which (A, B)  

having narrow ranges as compared with the third variable (C), 

we might expect that  

-  there will be positive association between %A and %B, and 

negative association between %C and %A (%B).  

-  we can use the B/A ratio to estimate slope of the %A vs. %B 

regression line. 

-  a decrease (increase) in the variability of either one or both 

of the two narrow - range variables will improve (make poorer) 

the association between their relative amounts.  

 - narrowing (broadening) the range of the broad - range 

variable will make poorer (improve) the association between 

percentages of the narrow-range variables.  

2. With 3 positive scale variables, two of which (A, B) having high 

numbers and broad ranges relative to the third variable (C), we 

should expect a negative association between %A and %B,  and 

probably a poor association between %C and % A (%B).  

3. Ranges of 3 positive scale variables can be manipulated so as 

to obtain a Turning Point, i.e. a situation where a positive 

(negative) association between percentages of two of them 

turns to become negative (positive).  

4. With more than three variables, we may calculate the sum of 

all, minus the two under investigation; the preceding rules 

should in general apply to this “3-variable-modification”.  

The observed positive associations between percentages of fatty acids, 

that are precursors of eicosanoids (docosanoids), could possibly serve to 

improve the balance between molecules having opposing actions. We 

suggest that Intended Ranges could be a type of evolutionary selection, 

to obtain Distribution Dependent Correlations (DDC), mathematically. 

Conflicts of Interest: None 

Acknowledgment:   

I want to thank Professor emerita Anna Haug very much for allowing me 

to use data from her excellent diet trial in chickens.  

References  

1. Høstmark AT, Haug A (2014). The inverse association between 

relative abundances of oleic acid and arachidonic acid is related 

to alpha -linolenic acid. Lipids in Health and Disease 13(1):76. 

2. Mayes PA (2000). Metabolism of unsaturated fatty acids and 

eicosanoids. In: Murray RK, Granner DK, Mayes PA, Rodwell 

VW, ed.  Harper’s Biochemistry, New York: McGraw-Hill, p 

250-258. 

3. Baker RR (1990). The eicosanoids: a historical overview. Clin 

Biochem 23:455-458. 

4. Gogus U, Smith C (2010). n-3 Omega fatty acids: a review of 

current knowledge. Int J Food Sci Tech 45:417–436. 

5. Christie W. W. The Lipid Web (2019). Eicosanoids and Related 

Oxylipins, an Introduction. 

6. Kremer JM, Bigauoette J, Michalek AV (1985). Effects of 

manipulation of dietary fatty acids on manifestations of 

rheumatoid arthritis. Lancet: 184–187.  

7. Lorenz R, Weber PC, Szimnau P (1989). Supplementation with 

n-3 fatty acids from fish oil in chronic inflammatory bowel 

disease – a randomized, placebo-controlled, doubleblind cross-

over trial. J Intern Med Suppl 731: 225–732. 

8. Kromhout D, (2012).  Omega-3 fatty acids and coronary heart 

disease. The final verdict? Curr Opin Lipidol 23:554-559.  

9. Watanabe T, Ando K, Daidoji H, Otaki Y, Sugawara S, et al. 

(2017). A randomized controlled trial of eicosapentaenoic acid 

in patients with coronary heart disease on statins: The 

CHERRY study. J Cardiol 70:537-544. 

10. Nagata M,  Hata J, Hirakawa Y, Mukai N, Yoshida D, et al.( 

2017).  The ratio of serum eicosapentaenoic acid to arachidonic 

acid and risk of cancer death in a Japanese community: The 

Hisayama Study. J Epidemiol 27: 578–583. 

11. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, 

et al. (2018).  Omega‐3 fatty acids for the primary and 

secondary prevention of cardiovascular disease.  Cochrane 

Database of Systematic Reviews.  

12. Alvheim AR, Malde MK, Osei-Hyiaman D, Lin YH, Pawlosky 

RJ, et al. (2012). Dietary linoleic acid elevates endogenous 2-

AG and anandamide and induces obesity. Obesity 20:1984-

1994. 

13. Haug A, Olesen I, Christophersen OA (2010). Individual 

variation and intraclass correlation in arachidonic acid and 

eicosapentaenoic acid in chicken muscle. Lipids Health Dis 

15:37.  

14. Høstmark AT, Haug A (2018). The Fatty Acid Distribution per 

se Explains Why Percentages of Eicosapentaenoic Acid (20:5 

n3) and Arachidonic Acid (20:4 n6) are Positively Associated; 

a Novel Regulatory Mechanism? J Nutr Diet Suppl 2(1): 103. 

15. Høstmark AT, Haug A (2019). Associations Between %AA 

(20:4 n6) and Percentages of EPA (20:5 n3), DPA (22:5 n3), 

and DHA (22:6 n3) Are Distribution Dependent in Breast 

Muscle Lipids of Chickens. J Nutr Diet Suppl 3(1): 103. 

https://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-13-76
https://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-13-76
https://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-13-76
https://www.academia.edu/download/62327605/harpers-illustrated-biochemistry-twenty-sixth_edition20200310-84549-1mnbtwv.pdf#page=200
https://www.academia.edu/download/62327605/harpers-illustrated-biochemistry-twenty-sixth_edition20200310-84549-1mnbtwv.pdf#page=200
https://www.academia.edu/download/62327605/harpers-illustrated-biochemistry-twenty-sixth_edition20200310-84549-1mnbtwv.pdf#page=200
https://www.academia.edu/download/62327605/harpers-illustrated-biochemistry-twenty-sixth_edition20200310-84549-1mnbtwv.pdf#page=200
https://www.sciencedirect.com/science/article/pii/000991209090255S
https://www.sciencedirect.com/science/article/pii/000991209090255S
https://ifst.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2621.2009.02151.x
https://ifst.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2621.2009.02151.x
https://www.sciencedirect.com/science/article/pii/S0140673685920240
https://www.sciencedirect.com/science/article/pii/S0140673685920240
https://www.sciencedirect.com/science/article/pii/S0140673685920240
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2796.1989.tb01461.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2796.1989.tb01461.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2796.1989.tb01461.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2796.1989.tb01461.x
https://journals.lww.com/co-lipidology/FullText/2012/12000/Omega_3_fatty_acids_and_coronary_heart_disease_.8.aspx
https://journals.lww.com/co-lipidology/FullText/2012/12000/Omega_3_fatty_acids_and_coronary_heart_disease_.8.aspx
https://www.sciencedirect.com/science/article/pii/S0914508717302009
https://www.sciencedirect.com/science/article/pii/S0914508717302009
https://www.sciencedirect.com/science/article/pii/S0914508717302009
https://www.sciencedirect.com/science/article/pii/S0914508717302009
https://www.jstage.jst.go.jp/article/jea/27/12/27_JE103/_article/-char/ja/
https://www.jstage.jst.go.jp/article/jea/27/12/27_JE103/_article/-char/ja/
https://www.jstage.jst.go.jp/article/jea/27/12/27_JE103/_article/-char/ja/
https://www.jstage.jst.go.jp/article/jea/27/12/27_JE103/_article/-char/ja/
https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD003177.pub4/full
https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD003177.pub4/full
https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD003177.pub4/full
https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD003177.pub4/full
https://onlinelibrary.wiley.com/doi/abs/10.1038/oby.2012.38
https://onlinelibrary.wiley.com/doi/abs/10.1038/oby.2012.38
https://onlinelibrary.wiley.com/doi/abs/10.1038/oby.2012.38
https://onlinelibrary.wiley.com/doi/abs/10.1038/oby.2012.38
https://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-9-37
https://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-9-37
https://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-9-37
https://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-9-37
http://www.scienceinquest.com/open-access/fulltext/jnds/the-fatty-acid-distribution-per-se-explains-why-percentages-of-eicosapentaenoic-acid-20-5-n3-and-arachidonic-acid.php
http://www.scienceinquest.com/open-access/fulltext/jnds/the-fatty-acid-distribution-per-se-explains-why-percentages-of-eicosapentaenoic-acid-20-5-n3-and-arachidonic-acid.php
http://www.scienceinquest.com/open-access/fulltext/jnds/the-fatty-acid-distribution-per-se-explains-why-percentages-of-eicosapentaenoic-acid-20-5-n3-and-arachidonic-acid.php
http://www.scienceinquest.com/open-access/fulltext/jnds/the-fatty-acid-distribution-per-se-explains-why-percentages-of-eicosapentaenoic-acid-20-5-n3-and-arachidonic-acid.php
http://www.scienceinquest.com/open-access/fulltext/jnds/associations-between-aa-20-4-n6-and-percentages-of-epa-20-5-n3-dpa-22-5-n3-and-dha-22-6-n3-are-distribution-dependent-in-breast-muscle-lipids-of-chickens.php
http://www.scienceinquest.com/open-access/fulltext/jnds/associations-between-aa-20-4-n6-and-percentages-of-epa-20-5-n3-dpa-22-5-n3-and-dha-22-6-n3-are-distribution-dependent-in-breast-muscle-lipids-of-chickens.php
http://www.scienceinquest.com/open-access/fulltext/jnds/associations-between-aa-20-4-n6-and-percentages-of-epa-20-5-n3-dpa-22-5-n3-and-dha-22-6-n3-are-distribution-dependent-in-breast-muscle-lipids-of-chickens.php
http://www.scienceinquest.com/open-access/fulltext/jnds/associations-between-aa-20-4-n6-and-percentages-of-epa-20-5-n3-dpa-22-5-n3-and-dha-22-6-n3-are-distribution-dependent-in-breast-muscle-lipids-of-chickens.php


J. Nutrition and Food Processing                                                                                                                                                               Copy rights@ Arne Torbjørn Høstmark. 

 

 
Auctores Publishing LLC – Volume 5(1)-077 www.auctoresonline.org  
ISSN: 2637-8914   Page 18 of 18 

16. Høstmark AT (2019). Association between Percentages of 

Scale Variables, as Related to Distributions. J Nutr Diet Suppl 

3(1): 104. 

17. Høstmark AT, Haug A (2019). High Variability of Oleic Acid 

(OA, 18:1 c9) improves the Positive Association between 

%EPA (20:5 n3) and %AA (20:4 n6). J Nutr Diet Suppl 3(1): 

106. 

18. Høstmark AT (2019). Body Fatty Acids, Nutrition, and Health: 

Is Skewness of Distributions a Mediator of Correlations? J 

Nutrition and Food Processing, 2(1).  

19. Høstmark AT, Haug A (2019). The inverse association between 

relative abundances of oleic acid and arachidonic acid: a case 

of distribution dependent regulation? Lipids in Health and 

Disease, 18:123. 

20. Høstmark AT, Haug A (2020). Relative amounts of eicosanoid 

and docosanoid precursor fatty acids are positively associated: 

a distribution dependent regulation. Journal of Nutrition and 

Food Processing.  

21. Høstmark AT, Haug A (2020). Associations between %AA 

(20:4 n6) and relative amounts of other body fatty acids. Journal 

of Nutrition and Food Processing, 3(2).  

22. Høstmark AT, Haug A. (2020). Distribution dependent and 

cluster regulation of associations between body fatty acid 

percentages, as observed in chickens. Journal of Nutrition and 

Food Processing, 3(2). 

23. Høstmark AT (2019). Body fatty acids, nutrition, and health: Is 

skewness of distributions a mediator of correlations? Journal of 

Nutrition and Food Processing, 2(1).  

24. Høstmark AT, Haug A (2019). Alpha Linolenic Acid 

Variability Influences the Positive Association between 

%Eicosapentaenoic Acid and %Arachidonic Acid in Chicken 

Lipids. J Nutrition and Food Processing, 2(2). 

25. Høstmark AT (2020). Distribution Dependent Correlations: A 

Mathematical Principle utilized in Physiology, or Correlation 

Bias? Int J Res - Granthaalayah, 8(11), 63-75. 

26. Høstmark AT, Haug A (2021). Studies to Explain why 

Percentages of Eicosanoid Precursor Fatty Acids Are Positively 

Associated in Chicken Lipids. Jou Food Sci&Nutri: JFSN-112. 

27. Høstmark AT (2020). Association between relative amounts of 

white blood cell counts: a case of Distribution Dependent 

Correlations. Journal of Nutrition and Food Processing, 3(2).   

28. Høstmark AT (2021). Intended Ranges and Correlations 

between Percentages of Variables like Oleic Acid, 

Eicosapentaenoic Acid, and Arachidonic Acid. Foods, 10, 

1012.  

29.  Meng L-B, Yu Z-M, Guo P, Wang Q-Q, Qi R-M, Shan M-J, 

Lv J, Gong T (2018). Neutrophils and neutrophil-lymphocyte 

ratio: Inflammatory markers associated with intimal-media 

thickness of atherosclerosis. Thrombosis Res 170: 45-52. 

30. Liu Y, Du X, Chen J, Luo M, Chen L, Zhao Y (2020). 

Neutrophil-to-lymphocyte ratio as an independent risk factor 

for mortality in hospitalized patients with COVID-19. J Infect 

81: e6-e12. 

31. Swamidass, P.M. (Ed.) (2000). Assignable Causes of 

Variations. In Encyclopedia of Production and Manufacturing 

Management; Springer: Boston, MA, USA, 2000.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 This work is licensed under Creative    
   Commons Attribution 4.0 License 
 

 

To Submit Your Article Click Here: Submit Manuscript 

 

DOI: 10.31579/2637-8914/077

 

Ready to submit your research? Choose Auctores and benefit from:  
 

 fast, convenient online submission 

 rigorous peer review by experienced research in your field  

 rapid publication on acceptance  

 authors retain copyrights 

 unique DOI for all articles 

 immediate, unrestricted online access 

 

At Auctores, research is always in progress. 

 

Learn more https://auctoresonline.org/journals/nutrition-and-food-processing 

http://www.scienceinquest.com/open-access/fulltext/jnds/association-between-percentages-of-scale-variables-as-related-to-distributions.php
http://www.scienceinquest.com/open-access/fulltext/jnds/association-between-percentages-of-scale-variables-as-related-to-distributions.php
http://www.scienceinquest.com/open-access/fulltext/jnds/association-between-percentages-of-scale-variables-as-related-to-distributions.php
http://www.scienceinquest.com/open-access/pdf/jnds/high-variability-of-oleic-acid-oa-181-c9-improves-the-positive-association-between-epa-205-n3-and-aa-204-n6.pdf
http://www.scienceinquest.com/open-access/pdf/jnds/high-variability-of-oleic-acid-oa-181-c9-improves-the-positive-association-between-epa-205-n3-and-aa-204-n6.pdf
http://www.scienceinquest.com/open-access/pdf/jnds/high-variability-of-oleic-acid-oa-181-c9-improves-the-positive-association-between-epa-205-n3-and-aa-204-n6.pdf
http://www.scienceinquest.com/open-access/pdf/jnds/high-variability-of-oleic-acid-oa-181-c9-improves-the-positive-association-between-epa-205-n3-and-aa-204-n6.pdf
https://auctoresonline.org/article/body-fatty-acids-nutrition-and-health-is-skewness-of-distributions-a-mediator-of-correlations
https://auctoresonline.org/article/body-fatty-acids-nutrition-and-health-is-skewness-of-distributions-a-mediator-of-correlations
https://auctoresonline.org/article/body-fatty-acids-nutrition-and-health-is-skewness-of-distributions-a-mediator-of-correlations
https://lipidworld.biomedcentral.com/articles/10.1186/s12944-019-1067-7
https://lipidworld.biomedcentral.com/articles/10.1186/s12944-019-1067-7
https://lipidworld.biomedcentral.com/articles/10.1186/s12944-019-1067-7
https://lipidworld.biomedcentral.com/articles/10.1186/s12944-019-1067-7
https://auctoresonline.org/article/relative-amounts-of-eicosanoid-and-docosanoid-precursor-fatty-acids-are-positively-associated-a-distribution-dependent-regulation
https://auctoresonline.org/article/relative-amounts-of-eicosanoid-and-docosanoid-precursor-fatty-acids-are-positively-associated-a-distribution-dependent-regulation
https://auctoresonline.org/article/relative-amounts-of-eicosanoid-and-docosanoid-precursor-fatty-acids-are-positively-associated-a-distribution-dependent-regulation
https://auctoresonline.org/article/relative-amounts-of-eicosanoid-and-docosanoid-precursor-fatty-acids-are-positively-associated-a-distribution-dependent-regulation
https://auctoresonline.org/article/associations-between-aa-20-4-n6-and-relative-amounts-of-other-body-fatty-acids
https://auctoresonline.org/article/associations-between-aa-20-4-n6-and-relative-amounts-of-other-body-fatty-acids
https://auctoresonline.org/article/associations-between-aa-20-4-n6-and-relative-amounts-of-other-body-fatty-acids
https://auctoresonline.org/article/distribution-dependent-and-cluster-regulation-of-associations-between-body-fatty-acid-percentages-as-observed-in-chickens
https://auctoresonline.org/article/distribution-dependent-and-cluster-regulation-of-associations-between-body-fatty-acid-percentages-as-observed-in-chickens
https://auctoresonline.org/article/distribution-dependent-and-cluster-regulation-of-associations-between-body-fatty-acid-percentages-as-observed-in-chickens
https://auctoresonline.org/article/distribution-dependent-and-cluster-regulation-of-associations-between-body-fatty-acid-percentages-as-observed-in-chickens
https://auctoresonline.org/article/body-fatty-acids-nutrition-and-health-is-skewness-of-distributions-a-mediator-of-correlations
https://auctoresonline.org/article/body-fatty-acids-nutrition-and-health-is-skewness-of-distributions-a-mediator-of-correlations
https://auctoresonline.org/article/body-fatty-acids-nutrition-and-health-is-skewness-of-distributions-a-mediator-of-correlations
https://auctoresonline.org/article/alpha-linolenic-acid-variability-influences-the-positive-association-between-eicosapentaenoic-acid-and-arachidonic-acid-in-chicken-lipids
https://auctoresonline.org/article/alpha-linolenic-acid-variability-influences-the-positive-association-between-eicosapentaenoic-acid-and-arachidonic-acid-in-chicken-lipids
https://auctoresonline.org/article/alpha-linolenic-acid-variability-influences-the-positive-association-between-eicosapentaenoic-acid-and-arachidonic-acid-in-chicken-lipids
https://auctoresonline.org/article/alpha-linolenic-acid-variability-influences-the-positive-association-between-eicosapentaenoic-acid-and-arachidonic-acid-in-chicken-lipids
https://www.granthaalayahpublication.org/journals/index.php/granthaalayah/article/view/IJRG20_B09_3748
https://www.granthaalayahpublication.org/journals/index.php/granthaalayah/article/view/IJRG20_B09_3748
https://www.granthaalayahpublication.org/journals/index.php/granthaalayah/article/view/IJRG20_B09_3748
http://www.skepticmedpublishers.com/wp-content/uploads/2020/03/JFSN-112.pdf
http://www.skepticmedpublishers.com/wp-content/uploads/2020/03/JFSN-112.pdf
http://www.skepticmedpublishers.com/wp-content/uploads/2020/03/JFSN-112.pdf
https://auctoresonline.org/article/association-between-relative-amounts-of-white-blood-cell-counts-a-case-of-distribution-dependent-correlations
https://auctoresonline.org/article/association-between-relative-amounts-of-white-blood-cell-counts-a-case-of-distribution-dependent-correlations
https://auctoresonline.org/article/association-between-relative-amounts-of-white-blood-cell-counts-a-case-of-distribution-dependent-correlations
https://www.mdpi.com/2304-8158/10/5/1012
https://www.mdpi.com/2304-8158/10/5/1012
https://www.mdpi.com/2304-8158/10/5/1012
https://www.mdpi.com/2304-8158/10/5/1012
https://www.sciencedirect.com/science/article/pii/S0049384818304493
https://www.sciencedirect.com/science/article/pii/S0049384818304493
https://www.sciencedirect.com/science/article/pii/S0049384818304493
https://www.sciencedirect.com/science/article/pii/S0049384818304493
https://www.journalofinfection.com/article/S0163-4453(20)30208-5/fulltext
https://www.journalofinfection.com/article/S0163-4453(20)30208-5/fulltext
https://www.journalofinfection.com/article/S0163-4453(20)30208-5/fulltext
https://www.journalofinfection.com/article/S0163-4453(20)30208-5/fulltext
file:///C:/C/Users/web/AppData/Local/Adobe/InDesign/Version%2010.0/en_US/Caches/InDesign%20ClipboardScrap1.pdf
https://www.auctoresonline.org/submit-manuscript?e=33

