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Abstract 

Stachybotrys, Memnoniella, Doratomyces and Graphium all these genera belonging to Class: Sordariomycetes. 

This review is to demonstrate description, ecology, and secondary metabolites from Stachybotrys, Memnoniella, 

Doratomyces and Graphium and some of their reported biological activities. Besides, describing the importance 

and potentials of those fungi in order to encourage for further studies to each genus metabolites and purify already 

known metabolites.  
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Introduction 

Drug discovery has focused on microbial sources where nearly 80% of 

the world’s antibiotics have their origins. These sources have almost 

entirely been from soils collected from around the world, but new 

microbial habitats need to be examined for microbiota that produces 

useful bioactive compounds. Fungi and other microorganisms represent 

an invaluable source of natural product bioactive compounds, which are 

exploited in various contexts, ranging from crop protection to human 

medicine [1]. Fungi in general and endophytic fungi especially are 

excellent sources of novel, bioactive natural products. Although the 

antimicrobial bioactivities are the most easily assayed and other activities 

include anticancer, insecticidal, antiviral, anthelmintic, anti-plasmodial 

and immunomodulatory [2]. 

Schueffler and Anke, [3], reported that “between 2009 to 2013” 

approximately 100, 000 fungal species are known and more than one 

million are expected. The variety of species allow that fungi continue to 

be a rich source of new metabolites. Besides the traditional fungal 

isolates, an increasing interest in endophytic and in marine-derived fungi 

has been notice. Terrestrial fungi have produced many therapeutically 

significant molecules. However, the potential of marine fungi has only 

been investigated to a limited extent. In addition new screening strategies 

based on innovative chemical, biological, and genetic approaches have 

led to novel fungal metabolites in recent years. [3]. Several fungi engage 

in pharmaceutical industry, enzymes, food, and some take part in 

biotechnology, while some are sources of natural products with diverse 

chemical entities and wide applications. Fungi are well known 

biotechnological tools that have various applications in the fields of 

industry. Thanks to their ability to produce set of prestigious enzymes that 

is eco-friendly and can replace harmful chemicals used in those industries. 

[4-15]. 

This review highlights on Class: Sordariomycetes genera (Stachybotrys, 

Memnoniella, Doratomyces and Graphium) secondary metabolites. Also, 

screen for, and discover novel metabolites produced by those potent fungi 

in order to be involved in additional applications. Moreover, describing 

the unique chemical diversity of these fungal genera involved in medical, 

pharmaceutical, agricultural applications. Also highlight the harmful side 

of these filamentous fungus if present. 

Stachybotrys, Memnoniella, Doratomyces, Graphium, 
description and ecology 

The genus Stachybotrys belong to Ascomycota division; Class: 

Sordariomycetes; Order: Hypocreales; Family: Stachybotryaceae. 

Colonies usually blackish, hyaline or brightly coloured in one species 

only; conidiophores erect or suberect, unbranched or branched, hyaline or 

dark-pigmented, smooth or roughened, sometimes covered in part with 

dark granules, with apical clusters of phialides; phialides elliptical, 

subclavate or broadly fusiform usually with a small opening; 

phialoconidia sliming down to form slimy glistening heads, one-called, 

dark pigmented or hyaline, smooth or rough, sometimes covered with 
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dark granules, sometimes with longitudinal striations, elliptical, reniform, 

oval, subspherical or lemon-shaped (Figure, 1). The most common 

Stachybotrys species is Stachybotrys chartarum and Stachybotrys 

elegans. Stachybotrys chartarum; colonies slow-growing attaining 2.2 cm 

in diameter after 10 days on malt extract agar at 25C. Stachybotrys 

chartarum is worldwide and has been isolated from soil. Stachybotrys 

elegans; colonies attaining 4.5 cm in diameter after 7 days on malt extract 

agar at 25C, Conidia hyaline and broadly fusiform elliptical, ovate or 

subglobose  [14, 16].  

The genus Memnoniella belong to Ascomycota division; Class: 

Sordariomycetes; Order: Hypocreales. Colonies dark coloured velutinous 

or powdery; conidiophores erect, unbranched or sometimes forked, dark 

coloured, smooth or minutely verruculose; conidiogenous cells phialidic, 

in groups of up to 10 at the tip of conidiophore, clavate, cylindrical or 

elliptical; conidia in long persistent chains, one-celled, dark colour, 

smooth or echinate. The most common species is Memnoniella echinate; 

colonies moderately growing, attaining 5 cm in diameter after 10 days on 

malt extract agar at 25C, margin white changing to greyish towards the 

center (Figure, 2). Memnoniella echinate is very widely distributed 

common in soil and on cellulosic substrates and is known to be a good 

cellulose decomposer. Memnoniella is a related genus to Stachybotrys, 

but in the former, the phialoconidia do not slime down but are held 

together in long chains [14, 16].    

The genus Doratomyces belong to Ascomycota division; Class: 

Sordariomycetes; Order: Microascales; Family: Microascaceae. 

Doratomyces is a genus of the fungi imperfecti, closely related 

to Scopulariopsis (Figure, 3). Colonies greyish to black, velvety, floccose 

or powdery; conidiophores aggregated to form erect synnemata, each with 

a sterile stalk and fertile head; head composed of a central axis of 

anastomosing hyphae branching towards outside and bearing 

conidiogenous cells at the ultimate branchlets; annellophores ampulliform 

or lageniform; conidia born in long chains, dark, i-celled, elliptical, ovate 

or subglobose, rounded or apiculate at the apex, truncate at the base, 

smooth or roughened. Doratomyces differs from Trichurus by the absence 

of sterile hairs interspersed with the fertile hyphae of synnematal head. 

Doratomyces widespread in agriculture soil and the most common species 

is Doratomyces stemonitis. Doratomyces stemonitis  colonies slow-

growing attaining 1.8 cm in diameter on malte extract agar after 7 days at 

25C, margin whitish conidial areas dark grey, becoming black in age, 

surface synnematous; synnemata up to 1200 um high with globose to 

elongate or cylindrical fertile heads [14, 16].      

The genus Graphium belong to Ascomycota division; Class: 

Sordariomycetes; Order: Microascales; Family: Microascaceae (Figure, 

4). Graphium is a genus of the fungi imperfecti. Colonies dark coloured 

with erect synnemata, synnemata stout, darkly pigmented, each capped 

by a slimy head, individual element of each synnema diverging at the 

apex, branching penicillately; conidiogenous cells annelliform, born in 

verticils at the tips of branches, subulate or cylindrical; conidia 

(annelliconidia) cylindrical or widge-shaped, rounded at the apex, 

truncate at the base, hyaline or subhyaline, smooth, one-celled, produced 

in basipetal succession, but gathered in slimy heads. Graphium colonies 

attaining 4.5 cm in diameter after 7 days on oat meal agar at 25C. 

Graphium was isolated from soil containing cellulosic materials [14, 16]. 

 

Figure (1). Stachybotrys spp., different species, Photo was taken by Dr. Moubasher AH. [16]. 

https://en.wikipedia.org/wiki/Genus
https://en.wikipedia.org/wiki/Fungus
https://en.wikipedia.org/wiki/Fungi_imperfecti
https://en.wikipedia.org/wiki/Scopulariopsis
https://en.wikipedia.org/wiki/Genus
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Figure (2). Memnoniella spp., different species, Photo was taken by Dr. Moubasher AH. [16]. 

 

Figure (3). Doratomyces spp., different species, Photo was taken by Dr. Moubasher AH. [16]. 
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Figure (4). Graphium spp., different species, Photo was taken by Dr. Moubasher AH. [16]. 

Stachybotrys secondary metabolites 

The genus Stachybotrys produces a broad diversity of secondary 

metabolites, including macrocyclic trichothecenes, atranones, and 

phenylspirodrimanes. Although the class of the phenylspirodrimanes is 

the major one and consists of a multitude of metabolites bearing various 

structural modifications, few investigations have been carried out. This 

review highlighted the secondary metabolites produced by 

different Stachybotrys species [17]. Micro-scale extracts from 5 

different Stachybotrys strains, which were cultured on different media, 

spontaneous dialdehyde/lactone isomerization was observed for some of 

the isolated secondary metabolites, and novel stachybotrychromenes were 

quantitatively investigated. The metabolite profiles 

of Stachybotrys species are considerably influenced by different factors 

(Time of growth and substrates) and different species [17].  

The genus Stachybotrys can be found in nature as well as in the indoor 

environment, and cellulose-rich substrates containing high moisture 

levels are generally required for Stachybotrys growth [18]. Fungal growth 

in water-damaged buildings poses serious human health risks and can lead 

to allergic and respiratory issues [19]. Stachybotrys chartarum has been 

the subject of considerable attention due to transitory associations with 

idiopathic pulmonary loss in infants [20] and disease symptoms called 

sick building syndrome [21]. There are still controversial discussions 

concerning the role of Stachybotrys within these reported cases, 

concluding that there is inadequate evidence that exposure to mycotoxins 

is causally related to the adverse human health effects [22]. 

Nevertheless, Stachybotrys produces a broad variety of toxic secondary 

metabolites, which are of relevance in the indoor environment concerning 

human health [23, 24]. The most common species among this genus 

are Stachybotrys elegans and Stachybotrys chartarum, which were also 

found in the indoor environment [14]. Stachybotrys chartarum, is a toxic 

fungi, and common found in indoor air and causing mycotoxicosis, 

chronic fatigue, allergic diseases and other health problems 

Searching for novel and bioactive molecules of microbial origin for drug 

development, Stachybotrys and Memnoniella fungi generally have been 

found to be a rich source of novel and bioactive secondary metabolites of 

great importance. Results of phylogenetic analyses were in agreement that 

the Memnoniella is paraphyletic to Stachybotrys. Interestingly, most 

Memnoniella spp. were found to produce the similar chemical substances. 

Up until now, almost 200 secondary metabolites belonging to diverse 

structural types of trichothecene, triprenyl phenol, diterpenoid, 

isochroman, polyketide, cochlioquinone and cyclic peptide have been 

discovered. Most of these fungal metabolites were reported to possess 

several interesting biological activities, such as disruption of the 

complement system, inhibition of TNF-α release, endothelin receptor 

antagonism, anti-influenza A virus, antimalarial, inhibition of avian 

myeloblastosis virus protease, cholesterol esterase, tyrosine kinase, 

farnesyl-protein transferase, squalene synthase and human heart chymase 

as well as stimulation of plasminogen, fibrinolysis, thrombolysis [25]. 

Memnoniella secondary metabolites 

Memnoniella, according to phylogenetic analyses, is paraphyletic to 

Stachybotrys, and both produce similar secondary metabolites. Many 

secondary metabolites belonging to various chemical classes including 

trichothecene, triprenyl phenol, diterpenoid, isochroman, polyketide, 

cochlioquinone and cyclic peptide have been reported to be produced by 

this fungus [25]. Memnoniella produces many trichothecenes which are 

sesquiterpenoid mycotoxins such as trichodermin, trichodermol and 

phenylspirodrimanes [26]. On the other hand, Phenylspirodrimanes are 

signature secondary metabolites of both Memnoniella and Stachybotrys 

[27]. This generous production of secondary metabolites is accompanied 

with promising different biological activities including antiviral, 

antimalarial, TNF-α release inhibition, endothelin receptor antagonism. 

Also as potent inhibitor of tyrosine kinase, cholesterol esterase, farnesyl-

protein transferase, human heart chymase squalene synthase, and 

stimulator of plasminogen, fibrinolysis, thrombolysis [25].  

Doratomyces secondary metabolites 

Doratomyces microsporus is a famous producer of keratinase [28]. This 

species is a non-toxins producer, and it has a promising capability to 

biodegrade human stratum corneum [29]. Doratomyces has a 

considerable role in biodegradation of biphenyls compounds, especially 

species Doratomyces nanus, Doratomyces purpureofuscus, Doratomyces 

verrucisporus [30, 31]. On the other hand, Doratomyces was reported as 

statins producer [32, 33]. Adding valproic acid to Doratomyces 

microsporus culture induced production of seven antimicrobial 

compounds that showed activity against Staphylococcus aureus and 

several methicillin-resistance S. aureus (MRSA) [34]. 

Graphium secondary metabolites 

Marine-derived fungi are well known as rich sources of bioactive natural 

products. Indole alkaloids, isolated from a variety of marine-derived fungi 

https://thumbs.dreamstime.com/z/stachybotrys-chartarum-mould-toxic-common-fungi-found-indoor-air-causing-mycotoxicosis-chronic-fatigue-allergic-diseases-150652939.jpg
https://thumbs.dreamstime.com/z/stachybotrys-chartarum-mould-toxic-common-fungi-found-indoor-air-causing-mycotoxicosis-chronic-fatigue-allergic-diseases-150652939.jpg
https://thumbs.dreamstime.com/z/stachybotrys-chartarum-mould-toxic-common-fungi-found-indoor-air-causing-mycotoxicosis-chronic-fatigue-allergic-diseases-150652939.jpg
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especially Graphium genus, have attracted considerable attention for their 

diverse, challenging structural complexity and promising bioactivities, 

and consequently, indole alkaloids have potential to be pharmaceutical 

lead compounds [35]. Graphiumins A–J, bearing structurally rare DKPs 

with a phenylalanine-derived indolin substructure, were isolated from the 

culture broth of the marine-derived fungus Graphium sp. OPMF00224. 

Graphiumins A–J Compounds inhibited yellow pigment production by 

methicillin-resistant Staphylococcus aureus [36]. 

Fungi show remarkable potency to bioremediate hydrocarbons with 

complex structure and long-chain length such as 

Neosartorya, Graphium, Aspergillus, Talaromyces, 

Cephalosporium, Penicillium and others these genera were isolated 

from soil polluted with petroleum and also found to be the effective 

organisms for bioremediation of hydrocarbons in crude oil [37]. Kaur et 

al., [38], reported that Graphium spp. has the ability to biodegrade 

methyl-tert-butyl ether 

Conclusion  

Fungi are a noble and consistent source of unique natural products with a 

high level of biodiversity and also yield several compounds having 

different pharmaceutical activities, which is currently attracting scientific 

researches. Every study conducted on Stachybotrys, Memnoniella, 

Doratomyces and Graphium resulted in discovery of new metabolites or 

pointing to a possible application, which made these genera potential 

source of pharmaceuticals and attracted attention for further 

investigations of their important bioactivities properties. Stachybotrys, 

Memnoniella, Doratomyces and Graphium are known for their capability 

of producing various biologically active compounds with medical 

applications as antimicrobial, anticancer, anti-influenza A virus, 

antimalarial and others. 
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