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Abstract 

Purpose: Expert selected landmark points on clinical image pairs to provide a basis for rigid registration 

validation. Using combinatorial rigid registration optimization (CORRO) provide a statistically characterized 

reference data set for image registration of the pelvis by estimating optimal registration. 

Materials ad Methods: Landmarks for each CT/CBCT image pair for 58 cases were identified. From the 

landmark pairs, combination subsets of k-number of landmark pairs were generated without repeat, forming k-

set for k=4, 8, and 12. A rigid registration between the image pairs was computed for each k-combination set 

(2,000-8,000,000). The mean and standard deviation of the registration were used as final registration for each 

image pair. Joint entropy was used to validate the output results. 

Results: An average of 154 (range: 91-212) landmark pairs were selected for each CT/CBCT image pair. The 

mean standard deviation of the registration output decreased as the k-size increased for all cases.  In general, the 

joint entropy evaluated was found to be lower than results from commercially available software. Of all 58 cases 

58.3% of the k=4, 15% of k=8 and 18.3% of k=12 resulted in the better registration using CORRO as compared 

to 8.3% from a commercial registration software. The minimum joint entropy was determined for one case and 

found to exist at the estimated registration mean in agreement with the CORRO algorithm. 

Conclusion: The results demonstrate that CORRO works even in the extreme case of the pelvic anatomy where 

the CBCT suffers from reduced quality due to increased noise levels. The estimated optimal registration using 

CORRO was found to be better than commercially available software for all k-sets tested. Additionally, the k-set 

of 4 resulted in overall best outcomes when compared to k=8 and 12, which is anticipated because k=8 and 12 

are more likely to have combinations that affected the accuracy of the registration. 

Keywords: Combinatorial Rigid Registration Optimization (CORRO); Reference Data, and Joint Entropy 

Introduction 

The central aim of radiation therapy is to maximize the dose to the tumor 

volume while minimizing the dose to the surrounding healthy tissues 

[1,2]. During a session of radiation treatment it is standard practice to 

verify the patient’s position with respect to the planning CT images by 

registering a cone beam CT image (CBCT), taken while the patient is in 

the setup position, to the CT planning image, taken much earlier at the 

start of the treatment planning. The registered CBCT/CT image pair can 

then indicate to the therapist the proper table positioning shifts necessary 

to best align the patient with the desired alignment of the treatment plan. 

In spite of this alignment verification process it is difficult to ensure that 

each radiation port is being delivered as planned. This is due to several 

complicated factors such as patient movement, positioning, and the tumor 

size and shape, which can change during the course of treatment. This 

results in inter-and intra-fractional motion which can lead to over-or-

under-dosing the intended target and the organs at risk (OAR) [2, 3, 4]. 

For these reasons, several methods have been developed to validate and 

characterize the quality of image registration [5]. 

Traditionally physicians have qualitatively validated registered images by 

visually inspecting portal images and diagnostic quality images alongside 

a planning digitally reconstructed radiograph (DRR) [6].This method of 

assessing image registration quality typically involves the use of an in-

field metric (graticule mounted to the MV treatment head) to locate 

anatomical structures shared between the portal image and the DRR, in 

most cases this involves measurement of a point relative to unique 
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features of the bony anatomy. The accuracy of this method has been 

reported to be between 5 to 10 mm [7]. This type of registration is 

subjective and will not be feasible for large quantities of data [8]. 

Fiducial markers strategically placed in/on internal targets or OARs have 

also been used to find the ground truth of a rigid image registration [5] 

Due to the poor contrast of the prostate relative to the surrounding soft 

tissue and the increased visibility of gold fiducial markers in kV or MV 

X-ray imaging, intra-prostatic gold markers are used to improve targeting 

for surgical procedures and radiotherapy treatment to the prostate and to 

estimate registration error [9-12].Though fixed to the target anatomy, the 

fiducials are known to drift from their original fixed point either due to 

anatomy changes over time or detachment of the fiducial. The effect of 

fiducial relocation may lead to inter-observer error associated with the 

registration [13-15]. Also, the number of fiducials that can be fixed at any 

time is limited. O’Neill et al [16]. described that in a study of 427 patients 

undergoing intensity modulated radiation therapy using fiducial markers 

for image guided radiation therapy (IGRT) the intra-fraction motion was 

found to be greater than 2mm for about 66% of their patients. 

Expert positioned landmark points pairs have also been used to 

quantitatively validate registration quality. These landmark points are 

used to find the ground truth in correlated images which allows for 

validation based on the accuracy of the manual or automated selection of 

the points [17-19]. However, the quality of the landmark points must be 

validated. One metric for validating the quality of landmark points is the 

calculation of inter-and-intra-observer variation. This measurement is 

performed by requesting multiple experts to repeat the manual point 

selection of landmark points on the same data set multiple times [20]. For 

example, Shearer et al [21]. evaluated causes of error in landmark-based 

data collection using microCT and surface scanners. In their study, they 

measured the precision, accuracy and repeatability of craniodental 

landmarks. Their results showed that inter-observer error is of greater 

concern than intra-observer. Also, Fagertum et al., [22] showed the inter-

observer error of 73 selected facial landmarks selected to be between 

0.11-5.75 pixels. This validation method depends on how well the expert 

identified the points within each paired image set and the limited number 

of unique anatomical features from which corresponding sets of points 

can be selected with confidence. 

Mutual information is a metric that has been successful in performing 

registration between clinical images and can also be used as a metric for 

characterizing registration quality, especially those from different 

modalities [23,24]. Mutual information is a concept from information 

theory, which is applied to image registration to measure the amount of 

information one image contains about the other. The registered images 

are validated using the following comparison metrics: the root mean 

squared (RMS) difference of intensities of the two images, median-

absolute deviation of the intensity difference, and maximum intensity 

differences [25].  

One disadvantage of CBCT imaging is that large amounts of scattered x-

rays may enhance the noise levels in the reconstructed image and 

ultimately affect the contrast of the image. This noise is increased for 

thicker anatomical regions such as the pelvis making CT/CBCT image 

registration a very difficult problem.  

In this study, we present an offline quality assurance technique for image 

registration using a curated and statistically characterized reference data 

set of pelvic cases, each consisting of expert placed landmark points, 

CORRO registration values, and the original CT/CBCT image pairs from 

radiation therapy (RT) patient set-up for pelvic cases. We employ a 

method of joint entropy to quantitatively measure CORRO as we 

discussed in [26].  

Materials and Methods 

Image Data 

Fifty-Eight patients treated in the pelvic region at the Beaumont radiation 

oncology center were selected for a Beaumont Research Institutional 

Review Board approved retrospective study (2014-326). Each patient 

received a planning CT on a 16-slice Philips Brilliance Big Bore CT 

scanner (Philips NA Corp, Andover, MA) covering the entire anatomic 

region and utilizing immobilization devices. Each patient had CBCT 

images acquired for daily image guidance on the on-board imager for 

Elekta Synergy® linear accelerator (Elekta Oncology Systems Ltd., 

Crawley, UK). The CBCT images ranged from 512 × 512 × 88 to 512 × 

512 × 110 pixels with pixel size ranging from (1 × 1) mm2 and 3mm slice 

thickness to (0.64 × 0.64) mm2 and 2.5mm slice thickness. The planning 

CT was resampled to the same in-plane dimensions as the CBCT and the 

image content was shifted to place the anatomic isocenter at the center of 

the image volume shown in Figure 1. The machine isocenter is located at 

the center of the CBCT reconstruction image volume. Figure 1a shows 

the planning CT image with machine isocenter in red and image isocenter 

in blue; Figure 1b shows the planning CT at machine isocenter and Figure 

1c shows CBCT at machine isocenter. 
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Figure 1. Content of planning CT shifted to the machine isocenter. 

 

Rigid-body Registration 

Given the planning CT (P) and the CBCT (Q), we calculated the 

transformation Q=T(P) such that the corresponding coordinates in the 

two images correspond to the same physical location in both images. Let 

𝑷 = {𝒑𝟏 … 𝒑𝒌} and 𝑸 = {𝒒𝟏 … 𝒒𝒌}denoted the collection of points in 3D 

space ( ℝ3) with the same size, with P representing landmark points in 

the planning CT image and Q representing corresponding landmark 

points in the CBCT image. The registration problem in three-dimension 

(3D) consists of finding the transformation that achieves the best match 

between the corresponding features in P and Q such that the root mean 

square (RMS) distance, 𝒅𝒊, between corresponding points is minimized 

[11,27]. The appropriate translation vector is simply the mean 

displacement between the two sets of points [10]. The aim was to find the 

errors associated with locating the landmark points. The image 

registration problem is reduced to a shape analysis problem or to the 

orthogonal Procrustes problem [10-11, 28-29]. The Procrustes problem is 

simply a least square-fitting problem and studies have shown that the 

calculation of the rotation matrix R is more involved due to the non-linear 

condition for a rotation matrix to be orthogonal. If P and Q are replaced 

with their “centered” values i.e. their values less the mean values then the 

optimal transformation is represented as  

𝒑𝒊 → 𝒑𝒊 − �̅�                                                                              (𝟏) 

𝒒𝒊 → 𝒒𝒊 − �̅�                                                                              (𝟐) 

This reduces the problem to the orthogonal Procrustes problem where we 

seek to find the rotation R. The RMS distance to be minimized is termed 

as the fiducial registration error (FRE) [10-11].Therefore given four non-

coplanar points for a 3D volume the problem of rigid-body registration is 

to finding a rotation and translation (t) that minimizes the FRE which is 

represented mathematically as  

𝑭𝑹𝑬𝟐 ≡
𝟏

𝒌
∑|𝑹𝒑𝒊 + 𝒕 − 𝒒𝒊|

𝟐

𝒌

𝒊=𝟏

                                                 (𝟑) 

An FRE value of zero means the rigid-body registration is perfect. 

However, the fit will be approximate due to variations associated with the 

location of landmark points and we aimed to find the error associated in 

locating these landmark points. The translation is given by 

𝒕 = �̅� − 𝑹�̅�                                                                                   (𝟒)   
Where the bar indicates a mean over i=1,…,k.   

Landmark selection and generation of large k-Sets 

An in-house MATLAB-based software interface named ASEMPA 

(Assisted Expert Manual Point Selection Application) was developed to 

aid experts in manually selecting landmark feature pairs between the 

images. An average of nearly 150 landmark pairs were selected between 

each CT/CBCT image pairs. The anatomical landmark pairs selected were 

used to generate the k-set. A k-combination set was generated as a subset 

of the landmark pairs by combining k-number of landmark pairs without 

repeat. We call the set of all possible distinctive k-combinations that form 

the set of discrete independent trials the k-set. Three different sizes of k-

combination set were used in this study k=4, 8 and 12.  

Combinatorial Rigid Registration Optimization (CORRO) 

CORRO as discussed earlier is a recently developed method that uses the 

rigid registration generated by members of the k-set to calculate average 

registration values for the image pair as a whole. The average registration 
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values calculated by CORRO closely approximate the lowest entropy 

registration possible for the two images. 

To improve the quality of the final registration output from CORRO a 

screening process was developed to remove landmark points from the 

original landmark set which would result in poor registration quality. This 

was performed by first generating the k-set of k=4. A rigid registration is 

then computed for each k-combination set in the k-set and an FRE is 

calculated for each rigid registration. The registration transformation 

matrix associated with the minimum FRE, Tmin is then used to create the 

boundary condition of Tmin ± 2mm (± 2pixels shifts for 1 pixel/mm cases). 

This boundary condition is then applied to all calculated registration 

values to extract the registrations that are within tolerance and their 

respective k-combination sets. The union of all landmark point pairs from 

these filtered k-combination sets form, a new filtered landmark point set 

which is then used for CORRO. Effectively this removes landmark points 

of poor quality (1-30 points depending on the case and original quality of 

landmark placement) from the original data set, which is similar to point 

filters used in other fields such as remote sensing [30]. The filtered 

landmark location of these combination pairs is used to find the k-

combination set for k=8 and k=12 which is then used for CORRO. 

 In generating the k-combination set, we were able to create a large 

population of rigid registration values capable of mapping between the 

CT/CBCT image pair. Using k-sets with such a large population of k-

combination sets we estimated the true mean of the rigid-registration 

values (optimal registration) and use the central limit theorem to validate 

our results. The results were also validated using joint histogram and joint 

entropy calculation. The joint histogram of two registered images is less 

dispersed when the images are well aligned and the corresponding 

anatomical features overlap. The near perfect alignment in the joint 

histogram results in a low joint entropy value. 

Results 

Image Data, Landmark pairs and k-combination sets 

An average of 154 (range: 91-212) bony landmark pairs were selected for 

each CT/CBCT image pair. Large k-sets for k = 4, 8 and 12 were 

generated and used to solve for the rigid-body registrations. The size of 

each k-set ranged from 2,000 to 8,000,000 k-combination sets. Table 1 

shows 10 of the 58 cases included with our reference data set. The number 

of landmark pairs created for each case, the number of unique k-

combination set generated for all k-values are shown in columns 5 and 6.  

Case number CBCT Image 

dimensions 

CT Image 

dimensions 

Voxel dimensions 

(mm) 

Number of 

landmark pairs  

Size of k-Set used to 

estimate affine fit 

1 512×512×88 512×512×153 1×1×3 211 340283 

2 512×512×88 512×512×163 1×1×3 176 199376 

3 512×512×88 512×512×145 1×1×3 174 3286899 

4 512×512×88 512×512×165 1×1×3 130 2215522 

5 512×512×88 512×512×137 1×1×3 133 455199 

6 512×512×88 512×512×130 1×1×3 127 1728288 

7 512×512×88 512×512×147 1×1×3 94 252288 

8 512×512×88 512×512×122 1×1×3 151 3769901 

9 512×512×88 512×512×125 1×1×3 166 1158242 

10 512×512×88 512×512×160 1×1×3 176 1276718 

Table 1: CT images, summary of landmarks and k-combination set for each CT-CBCT image pair. The image and voxel dimensions are shown for 

all the cases used in this study. 

Rigid-Body Registration and Joint Entropy 

Applying the mean translation for combination k=4 for one of the CBCT 

cases the output registration is demonstrated by fusing the planning CT 

and CBCT to see how well the rigid registration performed. Figure 2 

shows the joint histogram of the registration from the x-ray volumetric 

imaging software (XVI). The mean registration from CORRO was 

applied to the CT/CBCT pair and the joint histogram was plotted and 

shown in Figure 2 for k=4, k=8, k=12 and XVI. 

The joint entropy of the planning CT and CBCT combination by targeting 

only the tumor regions for all cases was used to validate the results. This 

result is shown in Table 2 and the pie chart results in Figure 2 and the 

linear plot in Figure 3. Joint entropy has been discussed fully in our 

previous publication [26]. 

Estimating and Validating the Optimal Registration Using 

Central Limit Theorem 

The mean standard deviation of the registration output decreased as the k-

size increased for all cases. Calculating the joint entropy of all 58 cases 

validates the final results; a sampling of 10 cases is shown in Table 2. In 

general, the joint entropy evaluated using CORRO was found to be lower 

than results from XVI. 

Case XVI K-Set 

4 8 12 

1 7.2684 7.2221* 7.2389 7.2314 

2 7.2310 7.2168* 7.2277 7.2262 

3 7.1137 7.1047* 7.1227 7.1211 

4 7.1028 7.0968 7.0863* 7.0912 

5 7.2528 7.1630* 7.1668 7.1735 

6 7.0559 6.9622 6.9674 6.9621* 

7 6.8117* 6.8287 6.8339 6.8306 

8 7.2137 7.1643 7.1647 7.1605* 

9 6.9984 6.9277 6.9215* 6.9267 

10 7.1513 7.1187* 7.1336 7.1331 

Table 2: Joint entropy of registered images from XVI and rigid registration using k-set of 4, 8, and 12. An asterisk indicates lowest joint entropy. 
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Of all 58 cases 58.3% using k=4, 15% using k=8 and 18.3% using k=12 

resulted in the best registration using CORRO as compared to 8.3% of 

cases using the commercial registration software as shown in Figure 3. 

The joint entropy between the registration output from k-set of 4 versus 

k-set of 8, 12 and the commercial software were compared with 

correlation coefficient of 0.9989 for 4 and 8, 0.9988 for 4 and 12 and 

0.9947 for 4 and 12. 

 The minimum joint entropy for one of the cases was calculated and found 

to exist at the estimated registration mean as shown in Figure 6. 

 

Figure 2: Percentage comparisons between registration outputs from k-set of 4,8 12, and XVI. 

 

Figure 3:  Joint entropy comparison between the registration output from k-set of 4 versus k-set of 8, 12 and XVI. 

 

The k-set gives a large population of paired sets of points, (k-combination 

set) when we draw a large sample from the population of k-set then the 

distribution of the sample mean approaches a normal distribution, and the 

standard deviation of the sample mean decreases as the sample size 

increases.  

The normal distribution for one case for k-set of 4 is shown in Figure 4 

and the standard deviation, which is proportional to1 √𝑛⁄ , where n is the 
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sample size is demonstrated in Figure 5. It should be noted that for this 

particular case the estimated registration mean (population mean) is -

2.3608 pixels for x-translations and the mean of the sample mean is also 

-2.3608 as expected by the central limit theorem. In Figure 6a, the Joint 

entropy distributions for over 400,000 individual transformations for a 

sample case. The minimum joint entropy is at the estimated mean and 

minimum joint entropy of 6.4004 at RMS value of 32.11, which is close 

to the estimated mean for this sample, is 31.7397. Figure 6b shows the 

Joint entropy distributions of a random sample of 5000 individual 

transformations for the same sample case. The minimum joint entropy is 

at the estimated mean and minimum joint entropy of 6.4646 at RMS value 

of 31.4, which is close to the estimated mean for this sample, is 31.6369.  

To further prove that the joint entropy will always have a value close to 

the estimated mean we randomly sampled 1000 individual 

transformations shown in Figure 6c for the same case. The minimum joint 

entropy was again found to exist close to the estimated mean and 

minimum joint entropy of 6.4651 at the three RMS values which leads us 

to conclude that the sample has to be large in order to get the minimum 

joint entropy at just one RMS value. 

 
Figure 4: Distribution of sample mean for an example case (case 1). 

 
Figure 5: The distribution in figure 5 was used to validate sample sizes ranging from 100 to 300,000 and their sample standard deviation (pixels) is 

plotted. The difference for sample size of 500 is also shown.  For this image 1pixel=1mm. 
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Figure 6: Joint entropy for a) distributions for over 400,000 individual transformations for a sample case. b) Distributions for 5000 randomly 

sampled transformations for same case. c)  Distributions for 1000 randomly sampled transformations for the same case. The line shows location of 

smallest joint entropy value. 

Discussion 

Rigid body registration algorithms have been historically evaluated using 

geometrical features. Points and surfaces are most commonly used in the 

evaluation process. In this study, we created a data set for pelvic cases and 

statistically characterized this data using a methodology we developed 

called CORRO. Using landmark points identified by expert and 

employing the statistical method of combination without replacement we 

generated thousands and millions of landmark point sets for each case and 

estimated the true mean of the rigid registration and the registration error. 

The results were validated using the central limit theorem.  

The results of k=4 gave the overall best results when compared to k=8 

and 12, which is anticipated because k=8 and 12 are more likely to have 

mismatched points that would affect the accuracy of the registration [31].  

If d is the number of dimensions the number of points needed to perform 

a registration is given by n≥d+1 and the degrees of freedom is given by 

n≥d2+d hence for 3D the number of points needed should be n ≥4 and the 

degrees of freedom is 6 for a rigid registration which has only 3 rotations 

and 3 translations and 12 for an affine registration with 12 degrees of 

freedom 3 rotations, 3 translations, 3 scaling and 3 shearing. In 3D any 

four points can be mapped to another four points [32]. However, more 

landmarks result in more transformation which result in different 

weighted areas of the image. Coste [33]  shows that the result of using 

many landmarks could result in the combination of some of the points 

resulting in odd transformation of the image grid. This could be what 

happens in the case of k=8 and 12. 

The result of this work found that the when large samples were drawn 

from the k-set the estimated error associated with the registration reduces. 

This means for a given k-set a large sample can be randomly drawn to 

perform the registration with similar results rather than using registration 

for the entire k-set.  

Conclusion 

The results demonstrate that CORRO works even in the extreme case of 

the pelvic anatomy where the CBCT suffers from reduced quality due to 

increased noise levels. The estimated optimal registration was found to be 

better than results from XVI. The data created in this work will be made 

available to the scientific community for assessing image registration 

algorithms and to aid in the development of future image comparison and 

validation metrics. The result obtained in this study revealed that for ≥ 
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500 numbers of samples there are no significant differences in their 

registration errors as the deviation is less than a 0.01mm which is less than 

most clinical cutoffs. 

CORRO can also be an excellent tool for radiotherapy centers in Lower 

Middle-Income countries or radiotherapy centers without in-room kV 

imaging for a retrospective quality assurance in set-up process using the 

MV electronic portal imaging system and digitally reconstructed 

radiographs. Also, the reference set can be used in future studies to test 

image registration algorithms. The data has been made available at 

https://wiki.cancerimagingarchive.net/display/Public/Pelvic+Reference+

Data) 
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