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Vascular interventions have transformed the outlook towards improved 

patient-outcomes following atherosclerotic lesions [1]. These 

interventions, although revolutionizing the surgical management of such 

conditions, often present with a hefty clinical burden – that of restenosis. 

Such an end-state can be conceptualized by the fact that more than 20% 

of all vascular interventions result in restenosis [2];. Although anti-

proliferative drug-eluting stents offer somewhat promising abilities of 

reducing the possibility of restenosis, the risk of late stent thrombosis still 

cannot be ignored, with <60% of the maximum achievable luminal 

diameter being achieved post-procedure [3]. Therefore, there is an urgent 

unmet clinical need for the better understanding of the pathogenesis and 

identification of therapeutic targets. 

Vascular smooth muscle cells (VSMCs) in tunica media are key players 

in vascular remodelling after intimal injury due to their remarkable 

phenotypic plasticity [4]. However, this concept has recently been 

challenged by a discovery that adventitial stem/progenitor cells contribute 

to restenosis through stem cell renewal and differentiation into new 

VSMCs, which are stimulated by the intimal injury cascades [5]. VSMCs 

are derived from multiple origins including neural crest and local 

mesenchymal stem/progenitor cells during embryonic development [6]. 

Postnatally, VSMCs are derived from resident vascular wall progenitor 

cells [7,8]. In response to vascular injury, VSMCs undergo profound 

switching from a contractile to a synthetic phenotype, in which autocrine 

platelet derived growth factor (PDGF) signalling plays an important role 

[9]. In addition to dedifferentiation and proliferation of existing VSMCs, 

our studies and reports from other groups indicate that local resident 

vascular progenitor cells(VPCs) can differentiate into VSMCs and 

contribute to neointima formation [5,10-13]. However, the interaction 

between the existing activated VSMCs and VPCs recruitment remains 

obscure. 

The work of Angbohang et al. seeks to bridge this incomplete 

understanding, by exploring the role of a novel soluble isoform of type IV 

collagen A1(COL4A1s) secretion mediated by X-binding Box Protein 1 

splicing isoform (XBP1s), in contributing to vascular injury repair and 

neointima formation (14). Here, the authors described such an XBP1s-

mediated COL4A1s secretion as being capable of activating VSMCs to 

recruit stem cell antigen 1-positive (Sca1+) [14]. In the context of vascular 

injury, this results in the recruitment of Sca1+-VPCs to the site of injury, 

whereby promoting the development of re-stenosis following 

cardiovascular interventions. In this manner, the authors stress an 

intercellular communication between SMCs and VPCs in the adventitia 

after vascular injury [14].  

In addition to functioning as a mechanical scaffold and barrier, type IV 

collagen can support stem/progenitor cell differentiation toward vascular 

cell lineages [15,16]. Previous work showed that collagen IV plays a 

crucial role in the early stage of VSMCs differentiation from Sca1+ VPC 

and that integrin and PDGF receptor signalling pathways can be involved 

in the differentiation process [17]. Like most of the genes, type IV 

collagen genes also undergo alternative splicing [18]. Of paramount also 

in the discovery, is the identification of the novel protein isomer 

COL4A1s, as being the mediating factor in facilitating the identified 

intercellular communication between VSMCs and VPCs. This COL4A1s 

isoform largely resembles the main structural features of the COL4A1 

protein but has its internal helix domain shortened [14]. In terms of 

cellular function, the COL4A1s isoform may utilise its NC-domain to 

bind to integrins, but interaction with other cell surface components may 

be facilitated via the longer N-terminal [14]. Once translated however, the 

novel isoform of COL4A1 protein functions as a paracrine cytokine, 

encouraging the migration of VPCs into the site of injury. Here, they may 

differentiate into VSMCs and continue with their debilitating role in the 
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facilitation of adverse vascular outcomes in patients with cardiovascular 

interventions – characterised by neointima formation. The exact cellular 

functions of this novel isoform require further studies to comprehend its 

functions. 

The study of Angbohang et al., delves deeper also, into the mechanism 

facilitating the development of the novel isomer COL4A1s, whereby 

increasing its clinical relevance. As such, the authors have proposed two 

possible mechanisms by which this COL4A1s isomer could be 

introduced: that of the intron by-pass mechanism, and that of the 

unconventional splicing mechanism. Both proposed mechanisms rely 

heavily on the action of the active form of XBP1s to facilitate the 

development of the COL4A1s isomer. As such, we demonstrate knockout 

of the XBP1 gene in the VSMC of mice as resulting in decreased 

COL4A1 in the vessel wall [14]. XBP1 therefore remains as an essential 

transcription factor for the COL4A1 gene transcription. In terms of the 

mechanism of action, we demonstrate that XBP1 does not exert its action 

by directly binding to the promoter region, as the overexpression of 

XBP1s had no effect on pGL3-127bp-luc reporter gene expression. We 

proposed therefore, there may be an enhancer element involved and have 

also identified this enhancer element in the study – as existing as nearly 

identical sequences in exon 4 and exon 42 [14].  

As for the exact proposed mechanism, both pathways share a common 

origin – as that of endothelial denudation triggering thrombosis and the 

subsequent release of the platelet derived growth factor (PDGF). PDGF 

plays a dual role in VSMC differentiation and proliferation. It triggers 

VSMC differentiation in stem/progenitor cells, while it induces 

dedifferentiation and proliferation of mature VSMCs [16,17,19]. Our 

recent study has uncovered that PDGF activated XBP1 mRNA 

unconventional splicing in VSMCs, which contributed to VSMC 

proliferation [20]. XBP1 is an endoplasmic reticulum stress responsive 

transcription factor [21]. Our previous studies indicate that XBP1 plays 

multiple roles in endothelial cells [22-25]. In the present study, if the 

unconventional splicing mechanism is to be considered, the XBP1s can 

be said to bind to the previously outlined enhancer element in exon 4 and 

exon 42, whereby increasing the transcription of the COL4A1. Upon 

binding to the COL4A1 mRNA, the XBP1s protein can direct the 

COL4A1 mRNA to IRE1α, which can lead to the formation of the novel 

COL4A1s (spliced isoform). The subsequent unconventional splicing 

between exon 4 and 42 is said to be a key mediator in this unconventional 

splicing pathway. Alternatively, if the intron-bypass mechanism is to be 

considered, it can be said that the dimerization of exon 4 and 42-bound 

XBP1s leads to close proximity between exon 4 and 42, facilitating RNA 

polymerase transcription directly from exon 4 to exon 42. Consequently, 

a short transcript variant, COL4A1s, is produced. The development of this 

variant is characterised by the bypassing of the internal sequences. 

Theoretically, this mechanism will apply for gene transcription with large 

introns more efficiently and energy-saving. The phenomenon of 

transcription bypass was first described in transcriptional mutagenesis in 

cancer cells evolution [26,27]. As for COL4A1, the coding sequence 

region between exon 4 and exon 42 corresponds to its internal triple-

helical domain, which corresponds to the mechanical support function but 

may not be necessary to perform intercellular communication. Regardless 

of the molecular biological process being considered, the end fates of such 

mechanisms are the same – that of soluble COL4A1s protein production, 

which once secreted into extracellular matrix, functions as 

chemoattractant to recruit VPCs. 

An important element of the research of Angbohang et al. also, is the 

assertion of the influential relationship between the COL4A1s’ 

stimulation and the activation and differentiation of VPCs. However, the 

pathophysiological mechanisms underlying such a relationship remain 

unclear; future research could also focus on exploring the mechanism of 

migration of the COL4A1s-stimulated VPCs, to possibly investigate 

pharmacological interventions to inhibit this migration. Furthermore, 

future areas of research could focus on the identification of the 

transmembrane receptors interacting with COL4A1s in VPCs, to possibly 

determine whether pharmacological inhibition of these transmembrane 

receptors would prove fruitful in limiting the progression of restenosis. 

Additionally, albeit the structural make-up of COL4A1 mRNA renders it 

as possibly also being another unconventional splicing target of IRE1α 

(as its exon 4 and exon 42 elements resemble the stem-loop structure 

observed in XBP1 mRNA, the well-known splicing target of IRE1α), 

there remains limited understanding of the exact role of IRE1α in 

influencing the molecular properties of the COL4A1s mRNA. Exploring 

this in future studies could perhaps lead to breakthroughs in the 

treatment/prevention of restenosis following cardiovascular 

interventions, should the influence of IRE1α on COL4A1 mRNA be 

established – similar to the findings of Jiang et al., who demonstrate the 

anthracycline antibiotic, doxorubicin, as being capable of inhibiting the 

IRE1α – XBP1 axis that’s incorporated in the unfolded protein response. 

They assert also, that doxorubicin may be utilized clinically to target 

IRE1α–XBP1-dependent tumours [28] – the clinical extrapolation may 

prove it as a useful therapeutic mechanism to target IRE1α–XBP1-

dependent COL4A1s mRNA-induced VSMCs and VPCs 

communication. 

Overall, the study of Angbohang et al. is useful in establishing the 

intercellular communication between VSMCs and VPCs in adventitia 

after vascular injury; and in highlighting a novel protein isomer COL4A1s 

as being capable of medicating this intercellular communication. 

Furthermore, they also propose that the mechanism of this protein 

production is relatively special and put forward two hypotheses: the 

"bypass transcription" at a transcriptional level, and "unconventional 

splicing" at a translational level. Their study also highlights areas of 

potential future research, such as other substrates of action for the IRE1α, 

as well as investigating possible transmembrane receptors that could 

interact with COL4A1s in VPCs, to serve as targeting inhibition points in 

the treatment/prevention of restenosis. Should these areas be explored, 

targeting the XBP1–mediated COL4A1s secretion and the 

pathophysiological mechanisms involved, could provide breakthroughs 

in lowering the risk of developing restenosis, following cardiovascular 

injuries.  
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