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Background 
Cranial irradiation plays a role in the treatment of many different 

primary pediatric intracranial tumors. [1-10] However, the role of 

radiotherapy in this setting has been gradually diminishing based 

largely on concerns over the late adverse consequences of cranial 

irradiation.[11-15] These late effects include cognitive dysfunction, 

endocrinologic dysfunction, and cerebrovascular morbidity. [13-15] 

Many of the late adverse cognitive consequences of cranial irradiation 

may relate to damage to the neural stem cell compartment (NSC), 

limbic circuit (LC), and hippocampus. [16-18 Sparing of these critical 

structures dosimetrically may reduce the incidence and/or severity of 

late adverse cognitive sequelae in treated patients . [17-18] Our group 

has shown that it is dosimetrically feasible to spare these regions in the 

setting of whole brain radiotherapy (WBRT), prophylactic cranial 

irradiation(PCI) and partial brain radiotherapy for adult low and high 

grade gliomas. [19-21] In this study we demonstrate the feasibility of 

sparing these structures in the setting of PBRT using common 

treatment fields and dosing schedules for a number of different 

primary pediatric intracranial tumors This strategy should reduce the 

late adverse effects of cranial irradiation for this group of patients. 

Methods 

We selected one representative pediatric patient treated in our 

department within the past 4 years (2007-2010) with each of the 

following diagnoseslow grade supratentorial hemispheric glioma. 
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High grade supratentorial hemispheric glioma, low grade brainstem 

glioma (biopsy-proven WHO grade 1 astrocytoma of the midbrain), right 

optic nerve glioma, suprasellar CNS germ cell tumor, high grade 

chondrosarcoma of the right sphenoid bone, suprasellar 

craniopharyngioma, infratentorial ependymoma (without leptomeningeal 

dissemination), and low grade glioma (WHO grade 1) of the infindibular 

stalk. Two intensity modulated radiotherapy (IMRT) treatment plans were 

prepared for each patient using helical tomotherapy (TomoTherapy@, 

Madison, Wisconsin): one plan (STD: standard) which did not apply 

optimization criteria to the limbic circuit (LC), hippocampus (HIP), or 

neural stem cell compartment (NSC), and another plan (SPA: sparing) 

which attempted to minimize the maximum and mean doses to these same 

structures For each patient, an appropriate treatment target (PTV: planning 

target volume) was contoured, and this PTV was applied both the STD 

and SPA plans. The PTV varied by diagnosis, but generally consisted of 

the gross tumor as identified on imaging, areas of edema or areas 

otherwise felt to be at risk for containing microscopic tumor (for example, 

the ventricular system plus a 1cm margin for CNS germinoma whole 

ventricular radiotherapy plans), and an additional margin for setup 

uncertainity on the treatment table. 

Adequate target coverage, as defined by the D95 (isodose line covering 

95% of the PTV) and V100 (percent volume of the PTV receiving at least 

full dose/100% of the planned treatment dose), was required as the 

primary treatment objective in all plans (STD and SPA). 

Abstract 

Background 

To assess feasibility of sparing the neural stem cell compartment (NSC), hippocampus, and limbic circuit during partial brain radiotherapy (PBRT) 
for pediatric intracranial tumors. 

Methods 

Treatment plans were generated for the following pediatric intracranial tumors: low and high grade gliomas, low grade brainstem glioma, optic 
nerve glioma, hypothalamic glioma, localized ependymoma, skull base sarcoma, central nervous system (CNS) germinoma (involved field 
radiotherapy [IFRT] and whole ventricular radiotherapy [WVRT] ), and craniopharyngioma. For each pathology, standard intensity-modulated 
radiotherapy (IMRT) plans were generated using helical tomotherapy, as well as IMRT plans which spared limbic circuit, hippocampus, and NSC. 
Biologically equivalent dose for late effects (BEDlate effects) was generated for limbic circuit, hippocampus, and NSC. Percent reduction in mean, 
maximum, and minimum physical dose and BED was calculated between plans. 

Results 

We reduced mean physical dose and BEDlate effects to these critical structures by 44% and 47.9% respectively (range 5.4-78.8% and 7-80.3%). 
Greatest benefits in relative dose reduction were seen in high grade hemispheric glioma cases; least relative dose reduction was seen in WVRT 
cases. Dosimetric coverage of treatment target (PTV) was equivalent in all cases as assessed by D95 and V100 metrics. Integral dose to uninvolved 
brain was reduced by mean of 7.6% (range -19.3% to +0.3%) in sparing plans. 

Conclusions 

It is possible to spare limbic circuit, NSC, and hippocampus during PBRT for primary pediatric intracranial tumors using helical tomotherapy. This 
approach reduces integral dose delivered to uninvolved normal brain and may reduce late cognitive sequelae of cranial radiotherapy. 
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The dose prescriptions/ treatment schedules for each plan type are 

shown in (Table 1). Also, standard constraints were applied to the 

following critical normal structures (OAR: organs at risk) in all plans 

(STD and SPA): right and left lenses, right and left eyes, right and left 

optic nerves, optic chiasm, pituitary/infindibulum/ hypothalamus, right 

and left cochleae, brainstem, and spinal cord. These standard OAR 

dose constraints are shown in (Table 2). 
 

Tumor Phase 1 Phase 2 Total Dose 

Hemispheric 
glioma, high grade 

46Gy (23 
fractions) 

14Gy (7 
fractions) 

 

60Gy (30 fractions) 

Hemispheric 
glioma, low grade 

54Gy (30 
fractions) 

 
- 

 
54Gy (30 fractions) 

Brainstem glioma, 

low grade 

54Gy (30 
fractions) 

 

- 
 

54Gy (30 fractions) 

 
Optic nerve glioma 

50.4Gy (28 
fractions) 

 
- 

 
50.4Gy(28fractions) 

Hypothalamic 
glioma 

54Gy (30 
fractions) 

 

- 
 

54Gy (30 fractions) 

 

Ependymoma 
54Gy (30 
fractions) 

 

- 
 

54Gy (30 fractions) 

 

Craniopharyngioma 
54Gy (30 
fractions) 

 

- 
 

54Gy (30 fractions) 

Skull-based 
sarcoma 

60Gy (30 
fractions) 

 

- 
 

60Gy (30 fractions) 

WVRT CNS 
germinoma 

30Gy (15 
fractions) 

10Gy (5 
fractions) 

 

40Gy (20 fractions) 

IFRT CNS 
germinoma 

45Gy (25 
fractions) 

 

- 
 

45Gy (25 fractions) 

Table 1. Dose Prescriptions/Treatment schedules by tumor type 
 

Tumor  

High 

grade glioma, 

skull-based 

sarcoma 

Standard 

OARs 

Dose constraints 
for Std and Spa 

plans (PHASE 1) 

Dose constraints 
for Std and Spa 

plans (PHASE 2) 

Eyes 
0% to receive 
30Gy 

0% to receive 5Gy 

Lenses 
0% to receive 
4Gy 

 

0% to receive 1Gy 

Optic nerves 
0% to receive 
41Gy 

0% to receive 
11Gy 

Optic 
chiasms 

0% to receive 
41Gy 

0% to receive 
11Gy 

Brainstem 
0% to receive 
41Gy 

0% to receive 
11Gy 

Cochleae 
0% to receive 
18Gy 

0% to receive 2Gy 

Hypothal/Pit 
uitary 

0% to receive 
15Gy 

0% to receive 3Gy 

Low 
grade glioma, 

brainstem glio 

ma, optic 

nerve gliomas 

,craniopharyn 

gioma, 

hypothalamic 

glioma,epend 

ymoma, 

WVRT 

CNS germino 

ma, IFRT 

CNS germino 

ma 

 

Standard OARs 
Dose constraints 

for Std and Spa 
plans 

Eyes 
0% to receive 
25Gy 

Lenses 0% to receive 3Gy 

Optic nerves 
0% to receive 
40Gy 

Optic chiasms 
0% to receive 

40Gy 

Cochleae 
0% to receive 
20Gy 

Brainstem 
0% to receive 
40Gy 

Hypothal/Pituitary 
0% to receive 

18Gy 

Table 2: Standard OAR dose constraints 

For the SPA plans, we provided additional optimization criteria to 

maximally spare the study OAR (LC, HIP, and NSC) by placing 

restrictions on the mean and maximum doses to these structures (third 

priority). These study OAR were spared contralaterally for the 

supratentorial hemispheric low and high grade glioma and skull base 

sarcoma plans, and bilaterally for the other plans. 

For each plan the physical doses and biological equivalent doses (BED) 

delivered to the following structures were calculated: PTV (D95, V100, 

minimum dose, and maximum dose) and study OAR (LC, HIP, and NSC: 

meandose, maximum dose, and minimum dose). Within each tumor 

subgroup, delivered physical dose and BED to the PTV and study OAR 

were compared between the STD and SPA plans, and percent relative 

differences were calculated. The physical doses delivered to the standard 

OAR (right and left lenses, right and left eyes, right and left optic nerves, 

optic chiasm, pituitary/infindibulum/hypothalamus, right and left 

cochleae, brainstem, and spinal cord) were evaluated for each plan (STD 

and SPA) to ensure that they did not exceed our acceptance criteria (Table 
2), but BED were not calculated and the dose delivered to these structures 

were not compared between the STD and SPA plans. The BED, which 

represents a measure of the biologic likelihood of a given dose of radiation 

delivered on a given treatment schedule causing a given effect on a given 

tissue type (tumor or normal structure) for each of these structures was 

calculated using the following equation, where n is the number of fractions 

and d is the dose per fraction in Gy: 
 

 
We assumed an alpha/beta (α/β) ratio of 2 for late effects involving LC 

and HIP. For PTV and NSC we conservatively assumed an α/β ratio of 10 

because it is a value previously demonstrated for other tumors and stem 

cell populations [22]. The α/β ratio represents the ability of a given 

cellular type to repair sublethal damage to its DNA generated by radiation 

exposure, and is generally low (around 2-3) for tissues with little or no 

cellular turnover (and thus plenty of time available to repair damage 

before the next mitosis) such as muscle cells, fibroblasts, and neurons. The 

α/β ratio is high (around 10) for cells which are proliferating quickly and 

thus have little time available for DNA repair between mitoses, such as 

skin, gut epithelial cells, stem cell populations, and most tumors. No such 

studies have been completed for human NSC in vivo, and therefore our 

choice of an α/β ratio of 10 for this cellular population remains 

speculative. 

Since this is a dosimetric comparison study we investigated whether the 

SPA plans increase the integral dose to the normal uninvolved brain 

versus the STD plans. Integral dose, expressed in joules (J), represents the 

total energy deposited in a given mass of tissue, and is generally 

represented by multiplying the delivered dose (in Gray, or joules/kg of 

tissue) by the mass of tissue exposed (in kg). For each plan, OAR's 

designated as "uninvolved brain" which contained all brain parenchyma 

not otherwise included in standard OAR, study OAR, or treatment targets 

(PTV) were generated, The integral dose, ID, was computed from 

differential dose volume histograms using the following equation: 

 
 
 

 
Where is the average physical density of the uninvolved brain, 

Vi is the volume in m3 of each dose voxel and Di is the dose, in Gy, in 

each voxel. All is the average physical density of the uninvolved brain, Vi 

is the volume in m3 of each dose voxel and Di is the dose, in Gy, in each 

voxel. All these values are easily extracted from dose volume histograms. 

Using an average density instead of a voxel specific density in Equation 2 

is warranted since the brain density is rather uniform, which is not the case 

in highly heterogeneous regions such as lung. The integral dose can be 

expressed as a single value or as a dose-ID histogram d-IDh. 
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Results 

Dosimetric coverage of the treatment target (PTV) was excellent in all 

STD and SPA plans, with 94.8-96% of PTV receiving full dose in 

STD plans and 4.9-95% receiving full dose in SPA plans. However, 

there was greater dose inhomogeniety noted in the SPA plans, with 

minimum doses 56 to 99% (mean 90%) and maximum doses 101 to 

128% (mean 109%) of prescription dose. The corresponding ranges 

for the STD plans were to 81 to 99% (mean 92%) minimum doses and 

101 to 120% (mean 105%) maximum doses relative to the prescription 

dose. All plans (STD and SPA) were able to meet the dose constraints 

for all standards OAR as described in (Table 2) (individual plan data 

not shown). 

SPA plans were able to significantly reduce mean physical dose and 

BED delivered to the study OAR (LC, HIP, and NSC) in all cases: 

percent reduction in mean physical dose 5.4 to 78.8 (mean 44) and 

percent reduction in mean BED 7 to 81.5 (mean 47.9). The 

corresponding percent reduction in mean physical dose and BED for 

the limbic circuit, hippocampus, and neural stem cell compartment 

were 5.4 to 77.8 (mean 43.3) and 7 to 80.3 (mean 47.2), 18.2 to 67.4 

(mean 46.5) and 25.4 to 81.5 (mean 52.4), and 6.8 to 60 (mean 42.1) 

and 7.8 to 66.1 (mean 44.1), respectively. In most cases the minimum 

and maximum physical doses and BED delivered to the study OAR 

were also reduced in the SPA, although in a some cases the minimum 

physical dose and BED were higher (craniopharygioma and optic 

nerve glioma plans: LC absolute minimum physical dose increased by 

.05 to .1 Gy, mean 0.8 Gy) while in others the maximum physical dose 

and BED were higher (IFRT, WVRT, high grade glioma, low grade 

glioma, and craniopharyngioma plans: absolute maximum physical 

dose increased by .63 to 8.6 Gy, mean 2.5 Gy) for the SPA plan 

despite a lower mean physical dose and BED, evidence of greater dose 

inhomogeneity within the study OAR for the SPA plans. 

Integral dose (J) delivered to the uninvolved brain was reduced in the 

SPA plans as compared to the STD plans by a mean of 7.6% (range - 

19.3% to +0.3%). The greatest reduction in integral dose was noted in 

the high grade glioma SPA plans (19.3% reduction), The only 

treatment plan type in which integral dose was increased with sparing 

techniques was WVRT (0.3% increase in SPA plan versus STD plan) 

only treatment plan type in which integral dose was increased with 

sparing techniques was WVRT (0.3% ncrease in SPA plan versus 

STD plan). 

Discussion 

Cranial radiotherapy plays an important role in the treatment of a 

number of primary pediatric intracranial tumors [1-5]. In the case of 

CNS germinoma and brainstem glioma, cranial radiotherapy is a 

standard primary treatment modality, and studies in the setting of CNS 

germinoma which have attempted to exclude radiotherapy as a 

component of treatment have shown significantly inferior results [6- 

8,10]. 

Unfortunately, the use of cranial radiotherapy in children results in a 

number of adverse late sequelae include cognitive dysfunction, 

endocrinologic dysfunction, and vascular damage [13-15]. The 

cognitive dysfunction can be profound, with St. Jude Children's 

Hospital and others finding a direct correlation between the dose 

administered and a decline in overall IQ [14,23-26]. In the St. Jude 

study, the factors that seem to correlate most strongly were younger 

age at time of treatment, longer time interval since treatment, female 

sex, presence of hydrocephalus, higher volume of supratentorial brain 

irradiated, and higher radiation dose to the supratentorial brain [26]. 

They also found that irradiation of the supratentorial compartment and 

temporal lobes resulted in significant declines in IQ regardless of the 

dose exposure, with each Gy of exposure having a similar impact on 

declines in IQ [23]. The cognitive deficits seen after treatment are 

predominantly the inability to develop new skills and process new 

information, rather than loss of previously acquired function and 

memories [14]. 

Changes in fractional anisotropy (FA) on diffusion tensor imaging 

(DTI) MRI provide evidence of damage to white matter pathways, 

And these changes can be seen in pediatric patients who have been treated 

with radiotherapy for medulloblastoma and surgical resection for 

cerebellar astrocytomas, with one recent study showing a mean reduction 

in FA of 16.5%in treated patients versus controls [27-29]. These 

reductions in FA were found to correlate with a younger age at the time of 

treatment and declines in school performance [28]. Rueckriegel et al. 

found that supratentorial changes in FA were more prominent in patients 

treated with radiotherapy and surgical resection than with surgery alone, 

although the distribution of deficits was similar. Interestingly, the location 

of most of the changes as identified in (Figure:1 & 2) of their paper lie 

within the hippocampus, limbic circuit, or neural stem cell compartment 

[29]. 
 

 

Figure 1: Dose Prescriptions/Treatment schedules by tumor type 
 

 

Figure 2: Dose Prescriptions/Treatment schedules by tumor type 

Johannesen and colleagues have shown in a retrospective review of MRI 

studies from a group of adult patients previously treated with cranial 

radiotherapy (median dose 54 Gy) that doses of 29.2 Gy or above are 

associated with grade 3 white matter changes on MRI T2 and FLAIR 

sequences and worse neurocognitive outcomes and patient-reported 

quality of life, while doses in the range of 12.5-27.5 Gy delivered to the 

contralateral hemisphere were not associated with such changes [30]. This 

study, although performed in adult patients, is consistent with the findings 

from the group at St. Jude's which found that the percent volume of 

pediatric supratentorial brain irradiated to varying dose levels (0-20Gy, 

20-40Gy, 40-65Gy) correlated with IQ level after cranial irradiation [24]. 

Since the total dose delivered to the brain in the treatment of primary 

pediatric brain tumors exceeds this threshold of 20-27.5Gy (Table 1:), it 

would follow that reduction of dose to non-target regions of the brain in 

children should improve imaging and clinical outcomes [29-30]. 

Several investigators have demonstrated the feasibility of sparing NSC, 

limbic circuit, and/or hippocampus in adults during the administration of 

partial brain radiotherapy (PBRT) for glioma and whole brain 

radiotherapy (WBRT) [19,21,32-34]. The Radiation Therapy Oncology 

Group (RTOG) is currently accruing patients to a phase II study (RTOG 

0933) which aims to demonstrate the feasibility of sparing the 

hippocampus during the administration of whole brain radiotherapy. This 

study will incorporate baseline and follow up neurocognitive testing to 

assess the impact of hippocampal sparing on memory and other cognitive 

domains after treatment [RTOG.org]. 

Cranial irradiation also produces damage to the hypothalamicpituitary 

axis, particularly in children at doses as low as 18Gy [13,35-38]. This 

study was not designed to specifically evaluate dosimetric sparing of the 

pituitary-hypothalamic axis, but we are able in all plans (STA and SPA) to 

meet our planning objectives for the hypothalamic-pituitary axis (Table 2) 

Thus, efforts directed toward dosimetrically sparing the study OAR did 

not compromise dosage to the pituitary-hypothalamic axis. 
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In the current study, we have demonstrated the feasibility of sparing 

the limbic circuit, hippocampus, and neural stem cell compartment, 

with mean physical dose and BED to each structure reduced 44% and 

47.9%, respectively. In most cases we selected these structures 

bilaterally for sparing, but in the hemispheric glioma and skull base 

sarcoma plans we elected to spare these structures contralaterally as 

they could not be spared ipsilaterally due to the proximity of the PTV 

to the ipsilateral study OAR. We anticipate that these patients (those 

with the study OAR spared contralaterally only) will still derive a late 

cognitive benefit based on the available literature detailing the 

cognitive outcomes for patients who have undergone surgical temporal 

lobectomy for treatment of tumor or intractable epilepsy [40-42]. Such 

patients rarely have persistent cognitive deficits provided that the 

resected medial temporal lobe structures are diseased and the 

remaining medial temporal lobe structures are normal, suggesting that 

the remaining structures can compensate for any transient deficits 

sustained from the surgical procedure [40-42]. 

We believe that damage to the critical study OAR in this study (LC, 

HIP, NSC) is the principal cause of late neurocognitive deficits in both 

adult and pediatric patients, and our sparing is based around this 

assumption. However, others have suggested that low dose radiation 

exposure to the whole brain produces (or at least contributes) to these 

late adverse effects [43-44]. This theory suggests that it is reduction of 

the integral/overall dose to the brain which will ultimately provide 

cognitive protection. Investigators from Brazil has demonstrated the 

ability of IMRT to reduce the high dose regions and integral dose to 

the brain during the delivery of WVRT for primary CNS germinoma 

[31]. We similarly found in this study that the use of Tomotherapy 

IMRT reduced the integral dose delivered to the uninvolved brain by a 

mean of 7.6%, with all plan types showing benefit except for the 

WVRT plans, in which sparing techniques increased integral dose by 

0.3%. This reduction in integral dose to uninvolved brain might also 

reduce the incidence of secondary tumor induction in this at-risk 

patient population. 

Recently concern has been expressed over the use of intensity- 

modulated radiotherapy (IMRT) in the setting or cranial irradiation, 

since more total monitor units (MU) are required to deliver a given 

dose with this treatment modality, resulting in greater integral dose 

being delivered to the patient [45-47]. This finding has been shown in 

some but not all dosimetric studies comparing IMRT to either 

conventional/2-D or 3-D conformal treatment planning, with some 

studies showing a higher ID delivered to the brain and other showing a 

lower ID[45-51]. Reduction of ID should, in theory, reduce the risk of 

late second malignancies and cognitive dysfunction, although this has 

not been conclusively proven [45-46]. 

IMRT also produces more inhomogeneous dose distributions than 

conventional or 3-D conformal radiotherapy plans, with greater hot 

and cold spots (areas receiving greater than and less than prescription 

dose, respectively). This issue was noted in our treatment planning 

study, in which hot spots within the PTVs were in some cases >120% 

of presecription dose. While ideally these hot spots will be positioned 

within the tumor rather than within normal tissue, there is some 

concern that hot spots in normal brain may increase the risk for late 

adverse effects such as radionecrosis. For example, the commonly 

accepted TD5/5 (the dose which will result in a 5% risk of adverse 

events at 5 years in a given tissue) for normal partial brain is 60Gy 

[52]. Therefore, in the context of IMRT treatment planning for 

intracranial malignancies it would be prudent to minimize hot spots to 

the extent possible, and if possible to have them located within tumor 

rather than normal brain. 

Also, since most recurrences of glioma (high and low grade) occur at 

or within 2cm of the original site of disease after resection and/or 

radiotherapy, we do not believe that our cognitive sparing approach 

will increase the risk of relapse for these patients, as we did not 

compromise definition or dosimetric coverage of our treatment targets 

(Table 1: and el) [56]. 
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Another important approach to normal tissue sparing in the setting of 

cranial radiotherapy for pediatric brain tumors is the use of proton therapy 

[57-69]. Investigators at several institutions have performed dosimetric 

studies comparing the dose delivered to normal tissues with proton therapy 

as compared to IMRT and/ or conventional radiotherapy, and have 

consistently shown a reduction in dose to critical normal tissues favoring 

proton therapy [57,60,64-65]. Proton therapy has also been shown to 

reduce the integral dose to the body when compared with IMRT, and this 

reduction in integral dose is expected to result in a lower rate of secondary 

tumor induction after treatment [66-69]. This is a particularly important 

issue in children, and the use of IMRT (including helical tomotherapy) in 

this context, with its associated higher total body integral dose (due to a 

higher number of monitor units [MU] and higher leakage dose required to 

deliver a given dose of therapeutic radiation), should be approached with 

caution [67-68]. Importantly, no prospective randomized trials have been 

performed comparing proton therapy versus IMRT clinical outcomes in 

terms of either tumor control or late effects in the setting of adult or 

pediatric primary tumor treatment. 

We believe that the cognitive sparing approach detailed in this study and 

our previous studies should be implemented in the setting of a prospective 

clinical trial [19,21,39]. Formal neurocognitive data should be collected at 

baseline and following treatment to assess the functional outcome for 

these patients, and these results should be compared with those of either a 

control group treated prospectively without this approach or a historical 

control group with adequate follow up and neurocognitive data outcomes. 

Without such data, it will not be possible to properly assess the relative 

benefits of our approach. 

Conclusions 

It is dosimetrically possible to reduce physical dose and implicitly BED to 

the limbic circuit, hippocampus, and neural stem cell compartment during 

the administration of partial brain radiotherapy for the treatment of 

multiple types of pediatric primary intracranial tumors. Such treatment 

does not compromise dosimetric coverage of the treatment target or 

compromise dosimetric sparing of other critical normal structures 

including the pituitary-hypothalamic axis. Our cognitive sparing approach 

reduces integral dose to normal when compared to standard approaches in 

most cases, and should reduce the late adverse cognitive effects of 

radiotherapy in children, but needs to be studied in the context of a 

prospective clinical trial with formal evaluation of neurocognitive 

outcomes. 
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