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Introduction 

Regulation of the quantity and function of each protein in the 

human body is pivotal in maintaining homeostasis. The amount of 

protein in a living cell or in the extracellular matrix depends on the 

balance between synthesis and degradation. Hence, intracellular and 

extracellular proteolysis also play an important role in maintaining 

functional protein concentrations. Insufficient or excess protein 

cleavage and degradation, particularly when combined with the 

dysregulation of biosynthesis, may lead to pathogenesis [1-3]. 

Peptidases or proteinases are now classified into seven 

families based on the nature of the catalytic residues [4-6] serine 

proteases [7] cysteine proteases [8] threonine proteases [9] aspartic 

proteases [10] glutamic proteases [11] metalloproteases [12] and 

asparagine peptide lyases [13]. It is crucial to degrade unnecessary or 

misfolded aberrant proteins and their aggregate proteins, as the 

abnormal proteins may be toxic to cells. The ubiquitin-proteasome 

pathway plays an important role in protein degradation [14,15]. In 

addition, some regulatory proteins are subject to rapid proteolytic 

degradation, which allows cells to rapidly adjust their concentration 

both temporally and spatially [16].Thus, it is also important to maintain 

the physiologically appropriate abundance of structural proteins. For 

example, matrix metalloproteinases (MMP) play an important role in 

modulating tissue turnover during fibrogenesis and cellular 

regeneration [17,18]. Insufficient extracellular protein fibrolysis or 

degradation may lead to excess fibrosis, as occurs in the development 

of keloids and hypertrophic scars [18-20] and organ fibrosis [21-24]. 
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The ubiquitin proteasome system and calpain are involved in the 

regulation of skeletal muscle catabolism, and an altered metabolic status 

may lead to a loss of lean body mass and muscle wasting [25-28].Some 

proteases are highly specific and only cleave substrates with a certain 

sequence through limited proteolysis, generating peptide fragments rather 

than destroying their substrates, and thus activating or inactivating the 

protein, or completely altering the protein’s function [29-35]. The 

MEROPS database (http://merops.sanger.ac.uk) is an integrated source of 

information about peptidases, their substrates and inhibitors, which are of 

great relevance to biology, medicine and biotechnology [4-6]. 

Calpains May Modulate The Functions Of Their 

Substrates By Limited Proteolysis 

Calpains are Ca2+-activated non-lysosomal cysteine proteases that 

can cleave substrates in a limited fashion, besides completely degrading 

their target proteins [36-47]. Calpain-associated cleavage is essential to 

many calcium-regulated physiological processes, such as muscle 

contraction, neuronal excitability, secretion, signal transduction, cell cycle 

progression, cell proliferation, differentiation, apoptosis, and repair of 

damaged cell membranes [32,48,49]. Dysregulation of calpain is associated 

with multiple pathological processes, such as cardiovascular diseases, 

ischemic disorders, arterial sclerosis, muscular dystrophies, gastric ulcers, 

esophagitis, necrosis of activated hepatic stellate cells, fatty livers, 

pulmonary fibrosis, kidney diseases, neurodegenerative disorders, cataracts, 

vitreoretinopathy, diabetes, cancer, and infectious diseases [32,46,49-59]. 

Abstract 

Endogenous fragments of p53 identified recently in human cytomegalovirus (HCMV)-infected human lung fibroblasts, specifically a ~44-kDa N- 

terminal fragment referred to as p53(Cp44), have been shown to be generated via m-calpain cleavage. p53(Cp44) appeared to be tightly 
associated with a chromatin-rich fraction, and was stabilized by the proteasome inhibitor MG132, particularly in mock-infected cells. The N- terminal 
p53 fragments were also present in three human dermal fibroblast cell lines tested, including fibroblasts isolated from post-burn hypertrophic scar. 
Understanding the biological functions of these fragments in the regulation of physiological and pathological processes, and the mechanisms 
regulating their generation and degradation, may shed light on currently unrecognized aspects of p53 regulation and function, and may provide a 
pathway for drug discovery. 

Keywords: p53(Cp44); p53; calpain; cytomegalovirus 

Abbreviations: HCMV: human cytomegalovirus. 

Acknowledgements 

This work was supported by National Center for Research Resources Grant RR14712 (to TA), NICR Grant DE11389 (to TA), NIH Grant ES022821 

(to PJB), and NIH Grant R01-GM112936 (to CCF). 

mailto:talbrecht731@yahoo.com
mailto:zhenpingchen@yahoo.com
http://www.auctoresonline.org/


J Gastroenterology Pancreatology and Hepatobilary Disorders 
 

Calpain-mediated limited cleavage can change protein 

function or potency, such that the protein acts significantly different 

from the parent protein. For example, the 18-kDa Bax fragment 

generated by calpain-mediated cleavage [60] displays a more potent 

ability to induce cell death than the 21-kDa full-length Bax [61] and 

the 17-kDa neurotoxic fragment of the tau protein generated by calpain-

mediated cleavage may be a mechanism leading to neurodegeneration 

that is shared by multiple tauopathies [62,63]. Because specific amino 

acid residues or sequences have not been defined for calpain-mediated 

proteolytic cleavage [44,46,64-67], calpain-mediated proteolysis may be 

associated with the conformation of the target proteins. 

Endogenous Human P53 Fragments Generated Via 

M-Calpain-Mediated Limited Cleavage In Human 

Cytomegalovirus-Infected Cells 

p53 tumor suppressor is a key regulatory protein, with essential 

functions as a transcription factor [68] and a translational regulator [69], 

participating in diverse cellular processes such as cell cycle arrest, DNA 

repair, apoptosis, and cell senescence [68,70-72] that modulate many 

physiological and pathological processes, including those in the 

digestive system [73-79]. Activities of p53, such as efficient and 

specific binding to p53 cis-elements within target promoter sequences, 

as well as tissue-, time-, and stimulus-specific binding of numerous 

coactivators and modifiers, are regulated by its abundance and post-

translational modifications, which are influenced by a number of 

signaling pathways converging on p53 [68,80-88]. Constitutive 

synthesis and degradation maintain low levels of p53 in unstressed cells, 

but provide a mechanism for the rapid increase in cellular p53 levels in 

response to stress [89-91]. 

Human cytomegalovirus (HCMV) is a  herpesvirus that is 

responsible for serious infections in immunocompromised individuals, 

and in the developing fetus where it is associated with birth defects [92]. 

p53 is critical for HCMV infection [93-106]. Replication of HCMV in 

quiescent host cells is dependent on activation of these cells to enter and 

traverse the cell cycle to a point at or near the G1/S boundary [107-109]. 

Paradoxically, contrary to the anticipated low quantities of p53 in cells 

entering the cell cycle, p53 quantities are substantially increased during 

productive HCMV infection [93,95,98,99,102] and remain at high 

levels for a protracted time during HCMV replication [102]. It has been 

shown that p53 is stabilized in HCMV-infected cells, which is partly 

associated with its resistance to proteasome-mediated degradation due 

to the break down and nuclear export of HDM2 [102] (Figure. 1). On 

the other hand, it has been known for some time that human p53 may 

be degraded by calpain (110-115), and that degradation of p53 by a 

calpain-like protease is necessary for G1-to-S–phase transition [113]. 

Although the endogenous human p53 fragment generated via calpain-

mediated cleavage was not reported earlier, it has been shown that 

exogenous p53 produced by in vitro translation in a rabbit reticulocyte 

lysate can be cleaved by m-calpain [112], generating some fragments. 

Calpains are activated in HCMV-infected cells [116]. 

HCMV infection induces Ca2+ entry into infected cells [107], a 

substantial rise in intracellular free [Ca2+] [107] , which may activate 

the ubiquitous cellular calpains (Figure. 1). The activation of - and m-

calpain temporally overlap the increase in cellular p53 levels [116]. In 

HCMV-infected cells, at the times when calpain activities were 

apparent [116], high cellular levels of p53 were available without the 

potential confounding effects of rapid ubiquitin-facilitated p53 

degradation [102] (Figure. 1). In fact, the cellular abundance and 

stability of p53 were greater in HCMV-infected cells than in mock- 

infected cells [93,95,98,99,102,117]. The changes in the sensitivity of 

p53 to calpain-mediated cleavage in HCMV-infected cells may also 

contribute to the resistance of most p53 molecules to degradation 

(Figure.1). The relationship of specific post-translational modifications 

of p53 to its sensitivity to degradation by m-calpain- mediated cleavage 

during HCMV infection to remains to be studied. 
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Although most p53 molecules are stable in HCMV-infected 

human lung fibroblasts, some p53 fragments, particularly p53( Cp44), 

generated via m-calpain-mediated cleavage were identified recently [118]. 

That p53( Cp44) is the product of m-calpain cleavage of p53 was 

demonstrated, for example, by the following approaches: [1] treatment of 

HCMV-infected cells with calpain inhibitors, E64d or ZLLH, either in the 

presence or absence of cycloheximide, substantially decreased the 

abundance of p53( Cp44); (2) p53 extracted from either HCMV- or mock-

infected cells was susceptible to cleavage by m-calpain in vitro, which 

generated p53( Cp44), whereas -calpain-mediated digestion did not 

produce additional p53( Cp44) in vitro, although it degraded full- length 

p53. These and other results suggest that -calpain is not responsible for 

generating many, if any, of the p53 fragments observed in HCMV-infected 

cells (Figure.1); [3] additionally, the susceptibility of p53 to m-calpain 

cleavage in vitro was enhanced when calpain-sensitive p53 molecules were 

preserved by pretreating cells with E64d, [4] and the increased levels of 

p53( Cp44) in HCMV-infected cells were consistent with the activation of 

calpain in HCMV-, but not mock-, infected cells, as previously reported 

[116,118]. 

Calpain-Mediated Cleavage May also Collaborate with 

other Protein Degradation Proteases 

In our studies, the N-terminal p53 fragments generated via 

calpain-mediated cleavage may be further degraded via the ubiquitin 

pathway, as the proteasome inhibitor MG132 stabilized those fragments, 

including p53(Cp44), particularly in mock-infected cells [118]. Although 

greater quantities of p53(Cp44) were detected in HCMV-infected cells 

than that in mock-infected cells. These differences between in mock- and 

HCMV-infected cells may be due to the compromised ubiquitin- 

proteasome system in HCMV-infected cells [102]. The further degradation 

of these p53 fragments via the ubiquitin pathway suggests that calpain and 

ubiquitin systems may collaborate in the regulation of protein degradation 

(Figure . 1), especially when the latter pathway is not completely 

compromised by HCMV infection. 
 

 

Figure 1. Sensitivity Vs Resistant of p53 to ubiquitin and calpain 

cleavage/degradation, and the generation of p53(Cp44) via m-calpain- 

mediated cleavage in HCMV-infected cells. 

In HCMV-infected cells, most p53 are resistant to calpain-mediated 

proteolysis and proteasome-mediated degradation, although - and m- 

calpains are activated, and m-calpains are able to cleave some p53 and 

generated some p53 fragments, including p53(Cp44). The p53 fragments 

can be further degraded via proteasome pathway, which is compromised in 

HCMV-infected cells, due to the decrease of HDM2.   See text for detail. 

http://www.auctoresonline.org/
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The Biological Functions of p53 (cp44) and the other 

p53 n-Terminal Fragments Remain to be studied 

Human p53 comprises 393 amino acid residues and six 

modular domains [68,86,88,119-121] as follow: [1] the N-terminus 

transcription activation domain contains two complementary 

transcriptional activation domains, with the major one at residues [1- 

42] and the minor one at residues [55-75]; [2] the proline-rich domain 

residues [61-92] ; [3] the central DNA-binding core domain residues 

[94-292]; [4] the oligomerization domain residues [326–353]; [5] the 

nuclear localization signaling domain residues [316-325] and [6] the C-

terminal domain, which is involved in regulation of DNA binding, p53 

protein stability, and transcription cofactor recruitment residues [364-

393]. Among the p53 N-terminal fragments we observed by SDS-

PAGE, fragments with a molecular mass of about 44-kDa, 47- kDa and 

50-kDa could contain intact N-terminal structures, as they were 

detected with DO-1 and Bp53-12, since both antibodies recognize the 

N-terminal segment of p53 [122]. Although p53 appears to be a 53-kDa 

protein as determined by SDS-PAGE, size calculation based on amino 

acid residues yields a mass of only 43.7 kDa [123]. This difference may 

be due to the high number of proline residues in the proline-rich domain, 

which may slow p53 migration during SDS- PAGE and make it appear 

heavier than it actually is [123]. Because the proline-rich domain is 

located in residues [61-92], the N-terminal fragments observed should 

possess an intact proline-rich domain. Accordingly, based on the 

electrophoretic behavior of p53(Cp44) in SDS-polyacrylamide gels 

and considering the effect of the proline-rich domain, p53(Cp44) may 

lack approximately 70 amino acid residues at the C-terminus of p53. 

These missing residues contain most of the important domains, 

including the oligomerization domain, the nuclear localization signaling 

domain, and the whole C-terminal domain, these missing domains are 

subject to extensive post-translational modification, such as 

phosphorylation, acetylation, ubiquitination, sumoylation, methylation, 

and neddylation, and are critical for regulation of many biological 

functions controlled by p53 [68]. Nevertheless, the p53 protein has 

numerous other important active sites such as the transcription 

activation domain, the proline-rich domain, and the DNA-binding core 

domain, many of these sites will be preserved in p53( Cp44). In fact, 

in our studies, p53(Cp44) appears to be predominately located in the 

nuclei of HCMV-infected cells and appears to be tightly associated with 

a chromatin-rich fraction. It is possible that one or more of the p53 N-

terminal fragments binds to p53 response elements [124] and competes 

with the function of wild-type p53. Whether these p53 fragments bind 

to DNA indirectly by protein-protein interactions and/or directly via one 

or more of the domains remaining in the fragments has yet to be 

determined. Additional studies will be needed to define the precise 

mechanisms underlying the nuclear localization and tight chromatin- 

rich association of the p53 fragment identified here, as well as the 

possible effects of any p53(Cp44) binding. 

N-terminal p53 fragments were also present in human dermal 

fibroblasts, including fibroblasts isolated from post-burn hypertrophic 

scar, hinting at a wider role for the p53(Cp44) fragment in other 

cellular systems [118]. p53 (Cp44) may also be part of a wider stress-

associated, calpain-mediated response, making it worthy of future 

investigation. 

Conclusion 

Protein levels can be regulated at any of the steps in protein 

synthesis and degradation, from gene transcription, translation, post- 

translational modification including limited protein cleavage and 

complete breakdown. Great success has been achieved through small 

molecule drug discovery programs for the control of intracellular 

protein levels, particularly molecularly targeted therapy, and the new 

technologies are being developed [46,125-129]. The ubiquitin- 

proteasome system is important for degrading regulatory proteins and 

unnecessary, misfolded and/or aggregate proteins [14]. One novel 

approach uses Proteolysis Targeting Chimera (PROTAC) to degrade 

the functional target through the ubiquitin-proteasome system [129- 

133]. 
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Calpains participate in the regulation of many physiological and 

pathological processes by performing either general or limited proteolysis, 

the latter of which does not destroy but rather may modulate the functions 

of these substrates. Therapeutic strategies targeting the activity of calpains 

have been developed to improve the specificity and bioavailability of 

calpain inhibitors [46,125]. Understanding the molecular mechanisms 

governing the regulation of calpain activity, the sensitivity or resistance of 

a target protein to calpain cleavage, the interplay and collaboration of 

calpain-mediated cleavage and the other protease systems, e.g., the 

ubiquitin-proteasome system, and the function and regulation of new 

protein fragments generated by calpain-mediated cleavage, may shed light 

on novel pathways of new drug discovery. 
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