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Abstract  

Successful engineering of a microbial host for efficient production of a target product from a given substrate can be viewed 

as an extensive optimization task. Such a task involves the selection of high activity enzymes as well as their gene expression 

regulatory control elements (i.e., promoters and ribosome binding sites). Finally, there is also the need to tune expression of 

multiple genes along a heterologous pathway to relieve constraints from rate-limiting step and help reduce metabolic burden 

on cells from unnecessary over-expression of high activity enzymes. While the aforementioned tasks could be performed 

through combinatorial experiments, such an approach incurs significant cost, time and effort, which is a handicap that can 

be relieved by application of modern machine learning tools. Such tools could attempt to predict high activity enzymes from 

sequence, but they are currently most usefully applied in classifying strong promoters from weaker ones as well as 

combinatorial tuning of expression of multiple genes. This perspective reviews the application of machine learning tools to 

aid metabolic pathway optimization through identifying challenges in metabolic engineering that could be overcome with 

the help of machine learning tools.  

Keywords: pathway optimization, machine learning tools, enzyme activity prediction, promoter classification, 

expression tuning 

 

Introduction 

Metabolic engineering sought to increase the production of small 

molecules using cellular metabolism that has been rewired through 

genetic engineering. Comprising a workflow that can be categorized into 

design-build-test-learn cycle, a typical metabolic engineering project 

would involve iterative design and test experiments aiming to improve 

the expression of desired genes and production of target metabolites. As 

such, many aspects of engineering a microbe for overproducing a 

metabolite can be characterized as an optimization problem. Specifically, 

a key concern in metabolic engineering has been the selection of 

enzymes with high activity under a broad range of conditions, and strong 

promoters and ribosome binding sites, and the tuning of expression of 

multiple genes [1-4]. These goals could not be achieved through rational 

selection, but only with trial and error experimentation. The latter is not 

desirable considering the time and effort involved, and this has sowed 

the seeds for introducing data-driven algorithmic approaches to the 

traditional confines of metabolic engineering.  

Although optimization can be performed by various algorithms, the latest 

trend has been the application of machine learning tools in optimization 
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problems. In general, machine learning algorithms sought to identify 

patterns hidden in large datasets, and this enabling feature has been used 

in different aspects of metabolic engineering such as pathway 

optimization. Fundamentally, machine learning algorithms builds a 

model from input data using an iterative cycle of parameter fitting to a 

curvilinear description of the data. The obtained machine learning model 

could subsequently be used in predicting properties of enzymes or 

pathways using certain inputs. This thus arrives at the core enabling 

feature of machine learning: it is an automated search for a set of 

mathematic descriptions that describe particular sets of data. Usually 

thought to be data intensive, machine learning tools could also be applied 

to small datasets with or without data augmentation [5-7], and this latter 

feature dovetails with the inherently small scale nature of many 

biological datasets.   

Thus far, machine learning has been applied to many but not all aspects 

of metabolic engineering and pathway optimization. For example, 

machine learning has been utilised in reconstruction of metabolic model 

of a species [8-12]. De novo pathway engineering is another aspect that 

has benefited from application of machine learning tools [13]. Machine 

learning tools have also enabled the deciphering of kinetic parameters of 

enzymes from metabolomics data [14,15]. In the same vein, correlations 

between expression level and design of various gene expression control 

elements (e.g., promoter and ribosome binding site) has been sought 

using the tools of machine learning [16].   

This article sought to review areas where machine learning has informed 

pathway optimization. These include: (i) selecting enzymes with the 

highest activity for a pathway, (ii) selecting promoters and ribosome 

binding site of appropriate strength for particular genes, and (iii) tuning 

the expression of multiple genes in a pathway (Figure 1). But, the 

journey marched by machine learning in metabolic pathway 

optimization remains incomplete. For example, opportunities exist in 

applying machine learning to predict the regulatory motifs of enzymes 

and pathway dynamics from multiomics data [17], as well as assessing 

the performance of microbial cell factory [18].   

 

Figure 1: Areas where machine learning tools could aid metabolic pathway optimization at the enzyme selection, and promoter and ribosome 

binding site (RBS) tuning level. In particular, promoter and RBS tuning can be used in a combinatorial fashion to tune expression of multiple genes 

in a pathway. Discovery and prediction of enzyme regulatory motifs is an emerging area in which machine learning could aid metabolic pathway 

optimization.   

Selecting the enzymes with highest activity for 
incorporating into a pathway  

Essentially, a metabolic pathway comprises a set of reactions that 

transform a substrate into a product through a series of bond formation 

and cleavage. Both expert knowledge and retrobiosynthetic approaches 

could be used in developing this pathway [11]. In particular, machine 

learning methodologies have been successfully applied in 

retrobiosynthesis and is reviewed elsewhere [11, 19]. With a set of 

coupled sequential reactions in mind, the next step is in selecting the 

appropriate enzymes for performing the respective reactions. Recently, 

machine learning has helped refine gene annotation through better 

recognition of genomic signals such as polyadenylation signals and 

translational start site [20]. In particular, deep learning approaches have 

played an important role in dissecting the often convoluted signals from 

the genome in assigning gene function to sequence information [21-25], 

and is poised to help identify more enzyme candidates with suitable 

functions in a metabolic engineering project. The latter comes about due 

to enzyme promiscuity where some enzymes could be repurposed for 

other functions [26,27]. Usually, enzymes with the highest activities and 

performance are desired. But, given the plethora of similar enzymes in 

different species, how does one select the best performing enzyme for an 

application? Can machine learning help rule out some candidates that are 

unlikely to work? In addition, which performance measure should be the 

basis for optimization? Since enzyme performance can be described by 

turnover number, inhibitory concentration (Ki) and binding affinity 

between substrate and enzyme (Km), multiple parameters could be used 
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in machine learning tasks for predicting enzyme performance with amino 

acid sequence as input. But, the challenge lies in relative lack of full set 

of characterization data for different enzymes in varied species. Such 

data are incomplete given the effort and resources needed to perform 

detailed biochemical assays for each substrate. 

 One example of applying machine learning to predicting enzyme 

activity is in using an ensemble of enzyme characteristics such as 

biochemical parameters and structure to inform enzyme catalytic 

turnover number, which is a proxy parameter for enzyme activity [28] 

(Figure 2). Correlations between catalytic turnover number and enzyme 

structure elucidated by the machine learning tools hold important 

implications for how structural biology could inform enzyme 

biochemistry [28]. Indeed, other studies have also corroborated that 

enzyme conformation can be reliably correlated with enzyme activity 

level [29,30]. Furthermore, it has been shown that sequence alone could 

not accurately describe enzyme activity [31]. However, a study has 

shown that combination of sequence information and structural 

descriptors of enzyme-substrate recognition is useful for predicting 

enzyme function and activity [31]. Hence, the current state-of-the-art in 

enzyme activity prediction remains firmly in the realm of structure-

activity correlate, with attempts at extending the correlation to the 

sequence level meeting challenges at our inability to resolve the protein 

folding problem. But future advances in using machine learning to 

circumvent the protein structure prediction problem may ultimately tie 

the link between enzyme sequence and activity level.  

 

Figure 2: Neural network is a common machine learning tool for processing and mining multivariate complex input information. Complexity of the 

neural network depends on the number of hidden layers that process input information from the previous layer. Through processing by hidden layers, 

different facets of the input information are effectively mined to glean hidden mathematical relationships between variables. Shown here is the 

approach for mining hidden enzyme characteristics (sequence, structure and kinetic parameters) and enzyme activity correlate through neural 

network machine learning.   

Optimization of gene expression regulatory elements  

Gene expression regulatory elements such as promoters and ribosome 

binding site (RBS) controls the level at which the heterologous genes 

could be expressed. To facilitate selection of appropriate promoter and 

RBS for tuning the expression of heterologous genes, a need exists to 

build a predictive model able to correlate promoter or RBS sequence with 

expression level.   

Theoretically, building a machine learning model capable of predicting 

promoter or RBS strength from sequence information does not 

necessarily require accurate definition of promoter or RBS sequence, 

which remains a research topic [32]. But, if promoter sequences in a 

training dataset are accurate, this would reduce the noise in the model 

and afford more accurate prediction. Hence, the computational challenge 

in applying machine learning to promoter strength prediction lies in the 

identification of small snippets of nucleotide sequence that strongly 

correlates with expression level [33]. Currently, a commonly used 

method for extracting sequence features is position weight matrix [34], 

but the approach may not be transferable to different species [33]. 

Another problem with promoter strength prediction is the relative lack of 

data, particularly in cases where machine learning is applied to 

experimentally characterized promoters [35,36]. But, use of genome-

wide RNA-seq data may provide sufficient data that significantly 

improves machine learning based predictions of promoter strength. 

Typically, the input data for training are promoter or RBS sequence and 

expression level as measured by protein or mRNA transcripts abundance. 

Such data could be modelled by support vector machine algorithms 

[36,37] (Figure 3), but recently, deep learning methods have also been 

applied to the problem and have shown promising results [38,39]. One 

approach uses pseudo-dinucleotide composition coupled to CNN for 

both promoter identification and strength prediction in prokaryotic 

organisms [39]. The method demonstrated good performance compared 

to state-of-the-art methods, but it is still limited to classifying promoters 

into strong or weak promoters, which does not provide metabolic 

engineers with the ability to achieve fine-grained control over gene 

expression. Another approach took into consideration evolutionarily 

relationships between orthologous genes and showed that such a 

methodology provided better predictions of mRNA abundance from 

DNA sequence [40]. Overall, neural network-based approaches may not 

be the only way forward in promoter strength prediction, particularly in 

cases with small datasets. For example, kernel-based approaches such as 

support vector machines have provided better performance compared to 

artificial neural network in some instances [36]. 
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Figure 3: Kernel-based approaches such as support vector machine (SVM) glean hidden relationships in input data through discerning an 

imaginary plane that classifies data elements into different groups. Such SVM models could serve as classifier of data such as classifying promoters 

of a given sequence into strong or weak promoters. But, with better and more data, SVM could also build regression models that uses a mathematical 

relationship to describe the correlation between promoter sequence and expression level.   

In comparison to promoters, ribosome binding sites are more well-

defined. This comes about due to the structure of gene regulatory region 

where ribosome binding sites (RBS) are downstream of the 

transcriptional start site (TSS), which could be experimentally defined 

by RNA-seq data [33]. Similar to promoters, RBS are important 

modulators of gene expression level given that it governs the strength of 

binding between the small subunit (SSU) of ribosome with the mRNA 

transcript obtained after transcription. In a recent study, machine learning 

tools were used in defining the RBS sequence-phenotype relationship, 

which forms the basis for predicting optimal RBS sequences for multi-

gene pathway. Computational predictions were validated through 

experiments and demonstrated the approach’s utility in enabling 

screening of a large combination of RBS sequences for multi-gene 

pathway [41]. But, in general, correlation between RBS sequence and 

expression level may not be easily discernible by machine learning tools. 

For example, a recent study did not find strong correlation between 

experimental protein expression data and predicted RBS strength [42], 

thereby, indicating room for improvement in the application of machine 

learning to RBS strength prediction. One major hurdle in RBS strength 

prediction comes from the relatively small sequence space of these gene 

regulatory elements as RBS are inherently shorter than promoters. Lack 

of sufficient variability in expression level from the small RBS sequence 

set would thus severely hamper prediction of protein expression level 

from RBS sequence.   

Tuning expression of multiple genes using machine 
learning  

Expression of a heterologous gene in a cell incurs a metabolic burden. 

For long pathway comprising multiple genes, such metabolic burden 

may have a detrimental effect on cell growth. In other situations, there 

may be excessive expression of enzyme for a particular step of the 

pathway that may lead to depletion of an intermediate metabolite needed 

to maintain other critical pathways of the cell.  Hence, a need exists in 

tuning the expression of individual gene in a pathway to ensure that only 

sufficient enzymes are expressed to enable proper functioning of the 

pathway and deliver higher yields, and preventing metabolic choke 

points from emerging. Tools available for tuning the expression of 

multiple genes in a pathway would be promoter and ribosome binding 

site. Since heterologous genes are typically expressed in an operon in 

prokaryotic hosts, ribosome binding site tuning are more often used in 

prokaryotes. On the other hand, need for individual promoter for each 

gene of the pathway in eukaryotic hosts meant that promoter tuning is as 

important as ribosome binding site tuning in eukaryotes. Combinatorial 

tuning of promoter and RBS may thus afford fine-grained control over 

gene expression in eukaryotes.   

 Conceptually, the problem of optimizing expression of individual genes 

in a pathway can be depicted as a search for optimal levels of individual 

enzyme in a gene expression landscape. Statistical design of experiments 

approach has been put to use in this endeavour, yielding promising 

results that reduce experiment effort [43,44]. However, such search for 

the optimal combination of promoter and RBS usually will not arrive at 

the global optimum. In particular, extent in which the gene expression 

landscape is sampled determines the likelihood in which an optimal 

could be obtained. As the number of tunable parameters (promoter and 

RBS) increases with each additional gene in the pathway, the 

optimization problem could quickly escalate in complexity and size 

beyond the search capability of conventional optimization algorithms.   

One way to circumvent the problem is through employing machine 

learning to detect hidden mathematical relationships between different 

sampled points on the gene expression landscape where combinatorial 

pathway optimization experimentation help deliver the data points that 

feeds the machine learning algorithms (Figure 4). In a recent example, 

artificial neural networks are employed to glean relationships between 

product titer of different strains with different promoters in a 

combinatorial optimization exercise. Predictions from the machine 

learning algorithms were verified experimentally, thereby, 

demonstrating the utility of the approach [45]. Besides neural networks, 

support vector machines and other kernel-based approaches may also be 

useful for such applications. However, how well machine learning 

performs critically depends on the characteristics of the input dataset and 

its size. Better predictions would naturally come from a larger dataset, 

which places greater demand on experimentation in combinatorial tuning 

of expression of multiple genes. In addition, input data should also cover 

a wide range in order to achieve a large dynamic range for corresponding 

predictions of product yield, titer, and productivity. At a more 

fundamental level, much room exists for the utilization of machine 

learning approaches in combinatorial pathway optimization since most 

studies in the field still relies on statistical design of experiment or 

construction of smart libraries to expedite search for optimal gene 

expression level of a pathway [46,47]. Developing better methods to 

efficiently and cost-effectively generate the input data for training 

various machine learning models remain an important research topic.   
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Figure 4: Progressive refinement in our ability to sample a complex multi-dimensional gene expression landscape. Specifically, traditional statistical 

design of experiments could only sample a limited fraction of the gene expression landscape. This situation is partially ameliorated with 

combinatorial pathway optimization that afford sampling of a larger fraction of the landscape. Machine learning could theoretically build upon 

combinatorial pathway optimization by using its data points as training set to impute values between experimental data points on a curve, but errors 

remain inevitable given the relative lack of data points in experimental biological dataset. 

Conclusion 

Machine learning has been applied to many facets of metabolic 

engineering and pathway optimization. From selection of enzymes to 

tuning of gene regulatory elements, machine learning’s greatest strength 

has been the gleaning of hidden patterns in complex dataset to help offer 

solutions in new situations through building a predictive mathematical 

model. Such automated tools significantly ease the burden on metabolic 

engineers in making critical decisions such as gene selection and 

promoter choice during pathway optimization. But, application of 

machine learning tools to metabolic engineering remain a significant 

challenge for the novice researcher. This is made even harder by the 

cryptic nature of machine learning algorithms. Thus, more resources may 

be provided to enable researchers to begin integrating these tools across 

the pathway development process.    
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