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Abstract 

Mutations in the β-MYH7 gene are one of the major causes that lead to cardiomyopathies. However, to 

differentiate a causative nsSNP and its impact on protein structure remains a major challenge. In the present 

study, we detected a missense mutation Arg723His in the head motor domain of β-MYH7 in a HCM patient, 

and it was absent in 207 healthy individuals. The mutant (R723H) has been found to alter an evolutionarily 

conserved amino acid. In addition, the mutant (R723H) was predicted pathogenic by Polyphen-2 and SIFT 

bioinformatic tools. Further, the superimposed 3D structure of the mutant (p.His723 homology model) with 

native (p. Arg723) displayed the root means square deviation (RMSD) of ~3.38A0. We know that the non-

covalent interactions such as hydrophobic, electrostatic, Van der Waals, and hydrogen bonds between amino 

acids are at the heart of stabilizing protein structures. Here, we demonstrated how the mutant (p.His723) has 

disrupted a critical non-covalent interactions network at the mutation site and may contribute to the disease 

phenotype. Hence, our findings in the future could pave the way for developing small molecular modulators or 

myosin-targeted therapies for heart failure.  
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Introduction 

In general, non-synonymous Single Nucleotide Polymorphisms (nsSNPs) 

lead to change an amino acid of the encoded protein. They may affect 

protein structure, stability, and function, which may cause various 

diseases in humans [1-4]. About ≥50% of amino acids change are linked 

with genetic disorders [5,6]. However, a few amino acids change have 

remained uncharacterized in genes [7]. Mutations in the sarcomere 

proteins were reported to cause cardiomyopathies in various populations 

[8-15]. However, identifying the causative nsSNPs and their association 

led to disease is challenging. Cardiomyopathy is classified into 

Hypertrophic (HCM) and dilated (DCM) based on their heart muscle 

structure[16]. The HCM is characterized by excessive left ventricular 

thickening, arrhythmia, diastolic dysfunction, left ventricular outflow 

obstruction, myocardial ischemia, mitral regurgitation, and sudden death, 

with an estimated prevalence of 1:500[17]. Mutations in sarcomere genes 

predominantly cause HCM, of which ~75% of mutations were reported 

in the β-MYH7 and MYBPC3 genes [6,18-26]. Though the recent next-

generation sequencing (NGS) technology has significantly increased our 

knowledge about disease alleles [27,28], we are far from completely 

understanding the impact of deleterious alleles on disease phenotype. We 

know that a few mutations may lead to a misfolding and nonfunctional 

form of proteins to accumulate and which may cause diseases. More 

importantly, the interactions between constituent amino acids in a protein 

determine its 3D structure and function [29]. Here, we have demonstrated 

a deleterious effect of a missense mutation (Arg723His) on β-MYH7 

protein structure using (p.His723) homology modeling, an Insilco 

analysis.  

Materials and Methods 

Ethical statement and clinical evaluation  

We enrolled a total of 50 hypertrophic cardiomyopathy patients (HCM) 

from 2 hospitals (Table 1). They were (a) Baba Clinical and Genomic 
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Research Centre, CSIR Road, Taramani, Chennai, India, and (b) 

Academics and Research, Global Hospitals and Health City, Chennai, 

India. Along with 207 healthy volunteers matched for the age, sex and 

ethnicity were recruited as controls (Table 1), provided they had normal 

ECG and echocardiograph measurements and were unrelated to the HCM 

patients. The Institutional Ethical Committees (IEC) of all three institutes 

have approved the study. Before the sample collection, informed written 

consent was obtained from all patients and controls to fulfill the 

requirements of relevant guidelines and regulations that permitted 

research on human subjects, which has followed the ethics of the 

Declaration of Helsinki, the World Medical Association.  

 

 

 

 

 

 

 

NYHA-New York Heart Association; LVEDD-left ventricular end-diastolic dimension; 

LVESD-left ventricular end-systolic dimension; ECG-Electrocardiogram; 

LVEF-Left ventricular ejection fraction; SCD-Sudden cardiac death. 

Table 1: Clinical baseline characteristics of HCM patients with control 

 

Genetic studies 

The patients and controls DNA was extracted from peripheral blood 

samples, amplified using polymerase chain reaction (PCR), as described 

elsewhere [13]. The amplicons were purified using Exonuclease 1 and 

Shrimp alkaline phosphatase, following the manufacturer’s instructions 

(USB Corporation, 26, 111 Miles Road, Cleveland, Ohio 44128, USA). 

The purified amplicons were sequenced bi-directionally using the ABI 

Big Dye terminator cycle sequencing kit (Perkin–Elmer, Foster City, CA, 

USA) and ABI 3730 DNA Analyzer (Applied Biosystems, Foster City, 

CA, USA). Using Auto-Assembler software from Applied Biosystems 

(Foster City, CA, USA), the sequences were edited and screened for 

variations compared with the respective reference sequence obtained 

from Gen-Bank.  

In silico analyses   

A nonsynonymous single-nucleotide variant observed in our study was 

analysed using two bioinformatics tools, PolyPhen-2 (Polymorphism 

Phenotyping v2; http://genetics.bwh.harvard.edu/pph2/) [30] and SIFT 

(Sorting Intolerant From Tolerant; 

http://siftdna.org/www/Extended_SIFT_chr_coords_ submit.html). [31] 

Further, we built a homology model for a mutant of β-MYH7 by SWISS-

MODEL Repository System (SMTL) (http://swissmodel.expasy.org) 

[32], using 3D native template structure having 99% similarity obtained  

from the RCSB protein data bank (PDB) 

(http://www.rcsb.org/pdb/explore/explore.do?structureId=4P7H) [33]. 

To understand the impact of a nsSNP on β-MYH7 protein structure, we 

first superimposed the homology model of β-MYH7 with native β-MYH7 

protein template structure to measure their root-mean-square deviations 

(RMSD) between the atoms (backbone atoms) of the superimposed pairs. 

We second studied the non-bonding interactions (created/destroyed) at 

the mutation site of the homology model vs. native β-MYH7. We then 

plotted the hydrophobicity plot and Ramachandran plot and studied the 

homology model vs. native β-MYH7.  

Results  

In the present study, we detected a missense mutation (R723H) in the head 

motor domain of β-MYH7 (Fig.1A). We found that the mutant (R723H) 

has altered the evolutionarily conserved amino acid across many species 

(Figure 1A, B). The mutant (p. His723) was predicted pathogenic by 

Polyphen2 and SIFT bioinformatics tools. Further, to understand the 

impact of mutant (Arg723His) on its protein structure, we first 

superimposed the mutant (p.His723_homology model) with native β-

MYH7 protein (p.Arg723) and measured their root-mean-square 

deviation (RMSD), it was ~3.86Ao.  

 

 

Baseline characteristics HCM (N=50) Controls (N=207) 

Age (Yrs) 49±12 50.0 ±0.2 

Sex, males (%) 61 63 

Dyspnea or shortness of breath % 67 0 

Angina pectoris (chest pain) % 56.8 0 

Syncope (fainting) % 31.9 0 

Abnormal ECG % 57.4 0 

LVEDD, mm 36± 6.5 51.3± 2.7 

LVESD, mm 20.8 ± 3.7 32.1± 1.2 

Septum, mm 22.1 ± 4.2 9.0 ± 0.2 

Family History % 37 0 

Sudden cardiac death % 21.8 0 

http://genetics.bwh.harvard.edu/pph2/
http://siftdna.org/www/Extended_SIFT_chr_coords_%20submit.html
http://swissmodel.ex/
http://www.rcsb.org/pdb/explore/explore.do?structureId=4P7H)
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Figure 1A:  Electropherograms (arrows) showing a missense mutation CGCCAC (p.Arg723His), in the β-MYH7 gene. 

Figure 1A: Multiple alignments of amino acid sequences in the β-MYH7 gene of several species, showing that the amino acid p.Arg723 is highly 

conserved across many species 

 

We then compared the non-bonding interactions of a homology model 

(p.His723) vs. native β-MYH7 protein to understand the mutational 

impact on protein structure and function (Table 2; Figure 2). Here, we 

observed that the mutant His723 forms a peculiar hydrophobic interaction 

with Pro727 (A), which, in turn, forms a hydrogen bond with another 

nearby proline residue Pro731 (B). As a result, a hydrophobic interaction 

between two isoleucine residues (Ile730 and Ile736) has been destroyed 

(C) due to an increased van der Waals radius (Table 2; Figure 2). Further, 

the mutant p.His723 also destroys two electrostatic salt bridges; Arg723 

with Glu981 (D) and Glu981 with Lys865 (E) (Table 2; Figure 2). We 

know that the proline residue is unique and lacks an amide proton; 

therefore, it can't donate hydrogen to stabilize other bonds or promote 

stability, thus possibly making the mutant structure very rigid. The 

deviations in the mutant could be clearly understood when we compare 

the hydrophobic interaction distances between the native Arg723 with 

Ala729 (4.69 A0) in the template (F1) and the mutant His723 with Ala729 

(3.93 A0) in the homology model (F2) (Table 2; Figure 2). 

 

 

Table 2: The non-bonding interactions of a homology model p.His723 Vs. native template p.Arg723 of β-MYH7 at the mutation site 

 

Non-bonding 

Native_ARG723 
Distance 

Non-bonding 

Mutant_HIS723 
Distance Types Labelled 

Angle 

XDA 

Angle 

DAY 

Angle 

XDA 

Angle 

DAY 

A:ARG723:HH12 - 

A:GLU981:OE2 
3.25737 Bond-destroyed - 

Salt Bridge-

Attractive Charge 
D 93.26 125.02 - - 

A:ARG723:HN - 

A:ARG719:O 
2.09792 

A:HIS723:HN - 

A:ARG719:O 
2.23 

Conventional 

Hydrogen Bond 
- 144.1 146.15 126 143.34 

A:ASN726:HN - 

A:ARG723:O 
2.08037 

A:ASN726:HN - 

A:HIS723:O 
2.38 

Conventional 

Hydrogen Bond 
- 145.5 126.62 120 115.67 

A:ALA729 - A:ARG723 
4.69552 

(F1) 

A:HIS723 - 

A:ALA729 

3.94 

(F2) 
Alkyl-Hydrophobic F1&F2 - - - - 

A:LYS865:HZ1 - 

A:GLU981:OE1 
2.42839 Bond-destroyed - 

Salt Bridge-

Attractive Charge 
E 132.1 114.64 - - 

NO-BOND - 
A:ILE730:HN - 

A:HIS723:NE2 
2.73 

Conventional 

Hydrogen Bond 
- 157.9 123.92 136 126.46 

A:ILE730:HN - 

A:PRO727:O 
2.21757 

A:ILE730:HN - 

A:PRO727:O 
2.44 

Conventional 

Hydrogen Bond 
- - - 129 108.4 

A:ILE730 - A:ILE736 4.91767 Bond-destroyed - Alkyl-Hydrophobic C 157.9 123.92 - - 

A:ILE730:HN - 

A:PRO727:O 
2.21757 Bond-destroyed - 

Conventional 

Hydrogen Bond 
- - - - - 

NO-BOND - 
A:PRO727:CA - 

A:HIS723 
3.99 Pi-Sigma A - - - - 

NO-BOND - 
A:PRO731:CD - 

A:PRO727:O 
3.28 

Carbon Hydrogen 

Bond 
B - - - - 
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Figure 2: Non-bonding (NB) interactions at the site of amino acid substitution in a β-myosin mutant homology models vs. native template. 

 

We plotted the hydrophobicity plot to compare the hydrophobicity index of native protein Vs. mutant protein (Figure 3; Table S1). 

 

Figure 3: Hydrophobicity plot, we compared the amino acids in the native protein Vs mutant protein against their hydrophobicity index 

 

We then studied the Ramachandran plot to compare the energetically allowed and disallowed regions of backbone dihedral angles ψ against ϕ of amino 

acid residues in the mutant (homology model) vs. native (Figure.4; Table S2).  
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Figure 4: Ramachandran Plot, we compared the energetically allowed and disallowed regions of backbone dihedral angles ψ against ϕ of amino acid 

residues in the homology model vs. native. 

 

Discussion  

Mutations in a gene can be benign or pathogenic, and it is often 

challenging to establish which variants are pathogenic. The MYH7 is 

reported to be an important gene, and its mutations may lead to both HCM 

as well as DCM pathogenesis. Therefore, it is difficult to understand how 

a mutation can contribute to disease onset and how a gene mutation causes 

diverse cardiomyopathy phenotypes. In the present study, we found a 

nsSNP (Arg723His) in the head motor domain of β-MYH7 in a HCM 

patient (Figure.1A). However, we previously reported the same missense 

mutation Arg723His along with two other variations [(IVS19-1G) G>A, 

Ala729Ala] in exon 20 of the β-MYH7 gene (allelic heterogeneity) in a 

DCM patient and her son [34] [Rani et al 2021]. Thus, strongly 

reinforcing phenotypic plasticity in the presence of the compound 

mutation besides environmental background, epigenetic 

modifications/other factors, etc., [35,36]. The role of epidemiological 

factors in the pathogenetic process gains even more prominence because 

a single mutation can sometimes give rise to two very divergent 

phenotypes, emphasizing the role of gene modifiers and the influence of 

environmental factors in accounting for phenotypic plasticity [37,38]. 

This missense mutation R723H was absent in 207 healthy individuals. 

The mutant p.His723 has been found to alter evolutionarily conserved 

amino acids. It was predicted pathogenic by Polyphen-2 and SIFT 

bioinformatic tools. Further, we found that the mutant p. His723 

(homology model) uniquely disrupts and deviates a critical network of 

non-bonding interactions at the mutation site (Table2; Fig.2). We know 

that a network of different kinds of non-covalent interactions between the 

amino acid residues drive the accurate 3D structure of the protein. Though 

different kinds of molecular interactions determine the accurate 3D 

structure of the protein, a network of non-covalent interactions between 

them is crucial [39]. We showed hydrophobicity plot (Figure.3; Table S1) 

and the Ramachandran plot (Figure.4; Table S2) to understand the 

deviation in mutant protein structure. Though different sequences map to 

a similar structure, a nsSNP can dramatically change a protein structure 

and lead to disease phenotype, such as sickle cell anemia (glutamic acid 

to valine (E6V) in the β-globin) [40]. Some studies suggest that the 

abnormal proteins themselves serve as pathogenic agents and are 

associated with various diseases [41]. However, functional studies are 

needed to confirm the actual pathogenic effect of this mutation.  

Conclusion 

Here, we have demonstrated how the (p.His723) mutant disrupted a 

critical non-covalent interactions network that possibly affects the 

structure and function. Therefore, understanding the impact of nsSNP on 

protein structure is indispensable for targeting the mutant amino acid 

residue for therapeutic purposes. Our findings in future could pave the 

way for developing small molecular modulators or myosin-targeted 

therapies for failing hearts.  
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