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1. Introduction 

The circle map curve the phase response and the Arnold tongues of 

Consider some physical quantity ξ, which reflects the internal state 

of the biological oscillator. Let the eigenfrequency of the oscillator be 

equal T0. Let's call a marker any event that can be clearly seen in the 

experiment, which is reached by the value ξ only once per period. Such a 

marker may be, for example, the beginning of the action potential in the 

cardiac preparation. Let's define the oscillator phase as follows. The phase 

of an arbitrarily selected marking event (for example, the maximum value 

of ξ) is assumed to be zero. At any next time t, 0 < t < T0, the phase is 

defined as φ = t ∕ T0 (mod1). Since the rhythm is restored after the 

perturbation of the system, the introduced phase completely determines 

the state of the system. 

Suppose that an external periodic perturbation acts on a nonlinear 

oscillator. Then each external influence shifts the state of the system to a 

new state (1): 

φn+1 = φn + f (φn) (mod1). (1) 
 

The function f (φn) is called the phase response curve (PRC) [1] and 

determines the phase change after the stimulus. It is convenient to 

represent the points f (φn) of the system state lying on the circle of the unit 

radius. Then, by iterating the mapping (1), one point of the circle is 

converted to another point of the same circle. If the circle map is 

continuous, then it can be characterized by a number called the 

topological degree and equal to the number of passes through φn+1 the unit 

circle during f (φn) the time it passes once. In periodic perturbations of 

self-oscillations with a stable limit cycle, the dynamics is often described 

by maps of a circle with a topological degree 0 (when the over-threshold 

response gives rise to a new cycle) or 1 (which expresses a sub-threshold 

response to stimulation). The different types of circle maps are shown in 

Fig.1. 

 

 

 

 

Along with the topological degree, an important characteristic of the 

circle display is the number of rotations. We define it as the time average 

ratio of the external perturbation period to the period of the perturbed 

oscillator. If the rotation number is rational, ρ = M/N (here M is the 

number of cycles of the stimulator, and N is the number of cycles of the 

nonlinear oscillator), then the dynamics of the system will be periodic 
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In this publication, we generalize the proposed model of two interacting oscillators in the case of a strong 

difference in their periods (when the pacemaker pulses do not alternate) and propose a General model describing 
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Figure.1. Different types of circle maps [1]: (a) reversible, topological 

degree 1; (b) irreversible, topological degree 1; (c) piecewise 

continuous; (d) topological degree 0. 
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with the capture of the multiplicity phase N/M. If the rotation number is 

irrational, the system demonstrates quasi-periodic or chaotic behavior. 

In many cases, the disturbance by a single pulse of a spontaneously 

oscillating system leads to a phase shift of the current rhythm (see, for 

example, [2] and references there). The magnitude of the shift depends on 

both the magnitude of the stimulus and its phase in the cycle. The graph 

of the dependence of the new phase on the previous phase (i.e., PRC) is 

either a continuous circle map with a topological degree of 1 or 0, or a 

discontinuous function. Phase shift experiments were performed for a 

large number of different systems. We are interested, first of all, in the 

phase response curve, experimentally obtained in the study of cardiac 

drug. In [3] the duration of the cycle of spontaneous oscillations of 

Purkinje fibers after stimulation by short pulses of electric current was 

measured. The obtained phase response curve of the Biphase form is 

shown in Fig.2. Based on the study of this experimental material, the 

following generalizations can be made [3]. 

 

 

 

After the disturbance, the rhythm is usually restored (after the 

transition process) with the same frequency and amplitude as before the 

disturbance, and its phase is shifted. Depending on the phase, a single 

stimulus can result in either an elongation (early stimulus) or a shortening 

(late stimulus) of the duration of the perturbed cycle. At some amplitudes 

of the stimulus, obvious discontinuities are observed. To further study the 

dynamics of any constructed model, it is necessary, having 

experimentally obtained PRC, to find a good analytical approximation of 

this curve. This will allow to investigate the main features of the behavior 

of the system. The main characteristic of the desired function is the need 

to directly depend on only two physical parameters: the amplitude of the 

stimulus and the phase of the applied perturbation. All other (so-called 

"internal") parameters describing the course of the curve should (ideally) 

be reduced to these two. 

One of the simplest (and coarsest) approximations of a given PRC is 

the sinusoidal function, which ultimately results in a map of the form (2): 

φn+1 = f (a,b,φn) = φn + a + b sin 2πφn (mod1). (2) 

Where a and b are constants. However, despite its simplicity, this 

approximation correctly reflects the qualitative structure of the phase 

portrait of the system under study. 
 

 

The analysis of bifurcations of reversible circle maps was undertaken in 

the last century by A. Poincare and still attracts much -by V. I. Arnold [4] 

(see also [5] and the references given there). For fig.3 the bifurcation 

diagram of the circle diffeomorphism on the parameter plane (b, a) is 

shown. This diagram is divided into areas called language (or horns) of 

Arnold, which correspond to the sustainable capture phase ratio N/M (i.e., 

N cycles of the stimulator has M cycles of a nonlinear oscillator). Arnold 

languages exist for all rational relations N/M, where N and M are 

mutually Prime numbers. This means that there are an infinite number of 

Arnold languages that correspond to all possible ratios of frequencies of 

the stimulator and the perturbed oscillator. Between any two languages 

corresponding to N/M and N*/M* phase captures, there is another capture 

region corresponding to the capture of multiplicity phases 

(N+N*)/(M+M*). The structure shown in Fig.3, is the usual behavior for 

low stimulus amplitudes in simple theoretical models discussed below. 

However, as the amplitude of the periodic effect increases, this structure 

collapses. 

Relaxation model of Poincare oscillator 

A widely used idealization of some periodically stimulated 

oscillators is the Gelfand and cetlin model [6], or the relaxation model 

[2,7-9]. In this model, the value referred to as activity increases to the 

upper threshold, leading to some event. Then the activity returns to the 

lower threshold. If the rates of rise and fall of activity to the thresholds 

are fixed, and the thresholds are also fixed, then a periodic sequence of 

events is generated, the frequency of which is easy to determine. Periodic 

perturbation in relaxation models can be included in the form of threshold 

modulation, usually sinusoidal. 

In some works, instead of sinusoidal modulation of the threshold, 

other functions were considered, for example, Delta function peaks, 

rectangular and triangular pulses, etc. (see references in [10]). Arnold in 

[4] briefly discussed the possibility of using obtained model in the 

relaxation mapping to study the rhythms Wenkebach. Subsequent 

researchers found that piecewise linear monotone, discontinuous maps 

(Fig.1c), similar to those found in the relaxation model, appear in 

theoretical models of atrial-ventricular communication in AB blockade 

Figure .2. Phase response curve of cardiac tissue obtained experimentally 

[3]. The graph shows the dependence of the duration of the perturbed 

cycle (expressed in relative parts from the duration of the cycle in the 

control) on the phase of the cycle in which the pulse is applied. 

Figure.3. Schematic diagram of Arnold tongues. In shaded areas there is 

a steady phase capture. There are always other zones between any two 

capture zones. 
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[11,12]. Such mappings can be experimentally measured and used to 

predict complex rhythms observed in humans [13]. 

Despite the wide application, the relaxation model too simplistically 

describes the interaction of the oscillator and the external perturbation; 

much more vital is the use of models that take into account the individual 

response of the system to the external perturbation. Cardiologists usually 

assume that the nonlinear ODE that contains oscillation with a stable limit 

cycle, represent a suitable model for the generation of periodic activity of 

the heart [14]. In the case where the limit cycle is quickly achieved after 

a single stimulus, and the action of a single stimulus is known, it is 

possible to calculate the effect of periodic stimulation. The prototype of 

the model with a periodically perturbed limit cycle is the van der Pol 

equation with a sinusoidal perturbation. 

Consider the effect of a periodic sequence of short pulses on the 

oscillations described by a system with a limit cycle (see, for example, 

[10]). The simplest model is Poincare oscillator. In this model, a stable 

limit cycle is a circular trajectory. The perturbation is a horizontal 

displacement of magnitude b, and after stimulation, the system rapidly 

approaches the limit cycle along its radius. 

If it is the phase φn immediately preceding the nth stimulus, then the phase 

preceding (n +1) the nth stimulus is simply φn+1 = τ + g(φn, b) (mod1). 

Where τ is the time interval between periodic stimuli normalized for the 

eigenfrequency of the autogenerator, and PRC g(φ) is easily calculated 

[14-16]. 

This theoretical model for periodically perturbed limit cycles was 

independently proposed by several researchers [15-18]. Since for a simple 

model with a limit cycle RPC is calculated quite easily, it is possible to 

use analytical and numerical methods to determine the detailed structure 

of the phase capture zones as a function of the amplitude b and frequency 

a of the stimulus. In this example, for low stimulus amplitudes (b ≤ 1), the 

capture zone topology has a classical Arnold structure (Fig.3), and the 

circle display is a reversible degree 1 display. However, for b > 1, the 

dynamics is described by displaying a circle of zero topological degree. 

The extensions of Arnold's languages have a more complex form. There 

are bifurcations in the system, leading to doubling of the period and chaos. 

This model, although different from the exact electrophysiological 

models, nevertheless, surprisingly well reproduces many features 

observed in experiments on the study of periodically perturbed aggregates 

of some heart cells [19]. For example, glass et al. observed period 

doubling bifurcations and chaotic dynamics in the stimulation of heart 

fiber aggregates at frequencies slightly lower than the internal frequency 

at moderate stimulus amplitude. The same behavior was observed in the 

Poincar \ ' e oscillator [15,16,18]. 

The study of periodic exposure to the limit cycle has a direct 

application to the study of ventricular, or ventricular parastole. If the 

ectopic beat occurs outside the period of ventricular refractoriness, it is 

observed on the electrocardiogram, and the next normal (sinus) beat is 

blocked. A similar model can be used to predict the sequences of sinus 

and ectopic beats in patients with ventricular parasistole (see, for example, 

[20-24]). In work [24] it is established that the model of pure parasistole 

(where sinus and ectopic pacemakers coexist without mutual influence on 

each other) corresponds well to reality. 

However, the model of the perturbed cycle does not answer the 

question of what happens at large relaxation times to the limit cycle (this 

model is built on the assumption of a rapid return of the system to it, which 

allows only one phase variable to be taken into account in the 

calculations). In addition, it is not known what happens when the values 

of the parameters at which the existence of the limit cycle is controversial. 

Thus, it seems necessary to consider a model based on more General 

principles that take into account the change in the length of the perturbed 

cycle depending on the type of PRC without any additional conditions 

imposed on the behavior of the a priori system. 

2. General case of interaction between two 

pacemakers 

Consider two interacting pulse oscillators (or pacemakers) A and B 

with internal periods of Autonomous beats Ta and Tb, respectively. The 

interaction between the oscillators is again described using the so-called 

phase response curves (PRC). Again, we accept the same limitations on 

the nature of interaction. 

Briefly indicate them: 

 
1. The phase of the perturbed oscillator changes instantly after 

exposure. 

2. Phase shift depends only on two main parameters: the phase difference 

of the oscillators and the force of influence. In turn, the force of influence 

depends on the amplitude and coupling coefficient of the oscillators. In a 

real system, the coupling coefficient is an average factor that shows how 

the momentum decreases as it passes from one oscillator to another. 

Therefore, the phase shift f, which determines the new phase of the 
perturbed oscillator with a period T, can be represented as follows: Φ = 

Δ/Τ ≡ Φ(φ, ε), where Δ is the time shift of the perturbed oscillator, φ is 

the phase difference of the oscillators, and ε is the force of influence. 

Pacemakers can be represented as a set of individual peaks in the 

timeline. Suppose that the moments of the last pulses of oscillators A and 

B – a and b, respectively (Fig.4). Note that a and b are momentum 

moments after all previous phase shifts of the oscillators. In other words, 

you can observe the pulses of the oscillators at these moments. Thus, it is 

necessary to analyze two cases. 

 
 

          Figure.4. Model of two interacting pulse oscillators A and B.           

1. b < a. This is the case (1) in Fig.4, i.e. oscillator B excited the medium 

before oscillator A. let us Follow the dynamics of the system in real 

time. The nearest event affecting the further behavior of the whole 

system is the appearance of the impulse A at the time a. let us Stop at 

this moment and make a forecast. To do this, we define the concept of 
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the moments of the expected pulses of oscillators, ae and be (expected). 
Suppose we go back in time with respect to moment a. Since oscillator A 

has not yet acted, we should expect the appearance of the following 
pulses A and B at moments ae = a and be = b + Tb , respectively, where 
Tb – period B. Let's call this situation as "A excites and B is in the 
expected state" and symbolically denote as (a, be). Now consider 

(a, be)next. Otherwise, if ae   > be    then B excites the medium and A goes 

into the expected state, and the state of the whole system becomes (ae, 

b)next. 

2. b>a. This is the case (2) in Fig.4. This inverse situation is similar 

to the previous case with the difference in reflections due to the 

moment a. As A pulses, the following expected values ae 

can be represented as: 

e 
next 

pacemaker pulse A to B. Then the expected values of ae and be can be 
written respectively: ae

next = a + Ta and be = b. You can call this case 
as " B excites, and A is in the expected state" and denote as (ae, b). The 

ae = a  +  Ta = ae + Ta , be = b + Tb + ∆b (φb, εb) = be + ∆b (φb, εb), 

where ∆b (φb, εb) – time shift of the oscillator B, due to the action of A. 

It depends on the phase φb of pacemaker A with respect to B and the 

force of influence εb. The phase φb can be calculated as follows: φb = (ae 
− be) ∕ Tb (mod1). Where, the phase φb is a positive value, and 
it belongs to the segment [0; 1] (negative values in the previous two 
expressions are excluded by the (mod1) operation). 

To determine which oscillator will excite the medium next, you 

need to compare ae   and be   . If, ae   < be   then A pulses and B remains 

in the expected state until be , i.e. the system goes into state 

following expected values are given by the expression: 

ae = ae + ∆a (φa, εa) , be = be + Tb, 

where ∆a (φa, εa) – time shift of the oscillator A, due to the action of B. It 

depends on the phase φb = (ae − be) ∕ Tb (mod1) of pacemaker A with 
respect to A and the force of influence εa. Further analysis is also similar 
to case 1. Namely, if ae > be , then B pulsates and A goes into the 

expected state (ae, b)next , i.e. the state of the system becomes. 
Otherwise, if ae < be , then A excites the environment, and B remains 

in the expected state, and the system goes into the state (a, be)next . 

 

Summing up the above considerations, the model can be represented by the following diagram: 
 

 a   ae  a  T   a 

    next a    , ae  be 

 b
e 


be  be   ( , )   b

e 

 next next 

 next b b b 
e  e e   




next 
e 

 
(3) 

 a  
 

anext  a  a (a ,a )  a  , ae  be 

 
b 
  e   b 

 next next 

  bnext    b  Tb   next 

3. Generalization to N pacemakers 

Suppose we have N Autonomous pulse oscillators, or pacemakers. 

Let's also assume that all pacemakers are different. This means that each 

has its own internal cycle length Ti , i = 1,..., N, and the am plitude of the 

stimulus. To identify the connection between pacemakers, you must 

define the topology of the system space. In other words, you need to 

determine the nearest neighbors of each pacemaker in space. Conversely, 

it is obvious that determining the relationship between elements of such a 

spatially discrete system establishes its topology. Let's assume that all 

Let the set of expected pacemaker pulses be located on the time axis 

(see Fig.5). This means that in the absence of coupling, the pacemaker 

produces pulses at these points in time. 

In terms of expected values, which we will refer to for convenience 

as ae  a, be  b , the dynamics of the system can be described by 

the following difference equation: 

 

Ta 

pacemakers interact with each other, i.e. the so-called global coupling is     



b , A 

implemented. 
 

an1 
 

an 

 
 b (n ,b ) 

   
 bn1 

  bn 

  


(a , ) 
, B 

(4) 

Tb 

where: 

 



 

 

next and b 
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a  
(bn  an ) 

(mod1), 
 





b  
(an  bn ) 

(mod1). 
 

n 
T 

n 
T

 
a b 

 

 

 
  Figure.5. Model N of two-way interacting pacemakers.  

To get the next expected values, you must perform the same 

procedure with the newly received expected pulses. Then the dynamics 

of the system can be easily represented as the following iterative 

relation: 
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i 

 ( ,

  

    a n a 

n n 

i 

n 

T T 
n n 

 

 
 

 a  a 
 
Ti , i  j, j : a j  minai  , 

 

 

 
where: 

n1 
n  ij 

 ij n ij 
), i  j, 

n n   
i1...N 

(5) 

 

 
  (ij 

, )   f 
 
(ij 

, )T , ij 
[0,1],  ij 

j i 

 
an an 

(mod1). 

ij n ij ij n ij i n 

i 

 

Moreover, it is convenient to use functions in the construction of equations {fij(φij
n ,εij)} for dimensionless phase differences between pairs of 

pacemakers. 

4. Analysis   of   the   model of two interacting 

oscillators 

The system consists of two oscillators A and B, connected via PRC 

Δa(φ a,εa), and Δb(φ b,εa). The map (4) that determines the dynamics of 

such a system is a special case of the General model (5) for N = 2. We 

rewrite (4) using the expression for the dimensionless PRC: 

where: δ = Tb ∕ Ta. 

Let's make a brief analysis of the resulting display. Since in the 

General case x ∈ ( ‒ ∞, ∞), equation (7) is a one-dimensional nonlinear 

mapping of the real axis to itself. Note that this mapping cannot be 

reduced to a circle mapping by limiting x on the segment [0; 1], as is 

usually done for two pacemakers interacting via PRC. It is essentially 

asymmetric with respect to replacing x with − x (see fig.6). If f(x,ε) is a 

Ta 
 b 


, A 

non-monotonic function, then the map (7) is nonlinear and can exhibit 

different behavior: from complex periodic to chaotic dynamics. Due to 

 an1   an   b (n ,b )  the fact that x ∈ ( ‒ ∞ ,∞), in the strict sense it is not the phase difference 

       (6) of pacemakers. In this context, x can be called a generalized phase 

 bn1 
  bn 





where: 

 

Tb 

(a , ) 
,  B 


difference. By analyzing equation (7), you can determine which oscillator 

(A or B) is pulsating at a given discrete time n. This depends on the sign 

x: A excites the medium if xn < 0, and B pulsates when xn > 0. This makes 

it possible to determine the degree of phase capture of pacemakers. 

However, taking only the values into consideration xn, we will not be able 

to restore the original time series of events of pacemakers A and B. Using 

a  
(bn  an ) 

(mod1), b  
(an  bn ) 

(mod1). 
a b 

 

Suppose that pacemakers are of the same nature. Hence, we can 

assume fa(φ,ε) ≡ fb(φ,ε) ≡ f(φ,ε), where f(φ,ε) is a one-parameter function. 

The parameter ε integrally determines the overall effect of one oscillator 

on another. In the symmetric case εa ≡ εb ≡ ε. In our further consideration, 

we do not accept this symmetry. 

We introduce the dimensionless phase difference of pacemakers A 
and B: 

them xn, we can only talk about their phase difference. 

We will demonstrate how equations (6), (7) can be applied to study 

the behavior of two interacting pacemakers. Analysis of the real system 

shows that the function f(x, ε) can take various forms, but, as a rule, it 

satisfies some General properties that have already been mentioned 

earlier. For example, f(0, ε)= f(1, ε)=0. It usually has a maximum and a 

minimum. Sometimes, instead of extremes, it has breaks. Consider f(x, ε) 

in the elementary frequently used form. Then let f(x, ε) = εsin2πx, and this 

will lead to a system of dynamic equations: 

x 
 an  bn  

 
 a   a 

Ta 
 




sin(2b )T 

,
 an  bn 

n T  n1 
  

 n 
  

 b n b  (8) 

a     
 

a 

  bn1   bn   a sin(2n )Ta 
,
 b  a 

The choice Ta as a normalizing multiplier is irrelevant. Once T
  n n 

selected, Tb we get similar expressions. Subtracting the second equation 

of the system (6) from the first and dividing the result by, Ta we come to 
 b 

an  bn 

bn  an 

T 
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the following expression: 

x 1  sin 

 xn (mod1) 

, x  0, 

 
 

x  
 n b    n (9) 

x 1  f 
 xn (mod1), 


, 

 
 

x  0, n1   
x  

 n  
 b  n (7) 

x   sin(x (mod1))   , xn  0, 
n1   x  f (x (mod),  )   , x  0, 

 n n a n 

 n a n 
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For fig.6. examples of direct modeling of the system (4), (5) are presented. 

The left part of the figure shows some possible phase captures obtained 

from equation (4). The right and lower parts show the corresponding 

mappings (5), the periodic orbit defining the values of Lyapunov 

exponents. 

5. Approximation of the active medium as a lattice 

of pulse oscillators 

In this section, we will demonstrate a way to approximate discrete 

distributed environments based on the General model of coupled 

oscillators (5). Looking at the heart pacemaker at a microscopic level, it 

can be thought of as a large group of cells that generate heart rate and 

synchronize their action potentials to initiate heart contractions. Thus, 

instead of considering a single pacemaker, we can construct a lattice of 

coupled pulse oscillators. In this paper, we have limited ourselves to one- 

dimensional (chain) and two-dimensional (lattice) cases. 

Assume that the Autonomous pacemakers are located at the nodes of 

a two-dimensional square lattice of size (N х M). we denote the lattice 

element with coordinates (i, j) as Aij, where i=1,..., N and j=1,..., M. we 

restrict ourselves to considering a homogeneous medium and accept some 

restrictions on anisotropy. This means that the lattice pacemakers are 

identical, i.e. they have the same cycle length Tij ≡ T , i=1,..., N; j=1,..., M, 

(however, in reality, the cells on the periphery of the sine pacemaker have 

the shortest cycle length, although its center acts as the leading 

pacemaker). 

This restriction reduces the number of system parameters and 

therefore makes it easier to study the model. Now we will define the 

relationship between the elements. In works on lattices of concatenated 

maps, two main types of coupling are usually considered: nearest 

neighbor coupling and global coupling. Since in the previous sections we 

assumed that pacemakers all interact with each other, this time, as an 

example, we will consider lattices with a connection of the nearest 

neighbor type: first a two – dimensional lattice, and then a chain of 

coupled pulse oscillators. 

Figure.6. Various types of interactive behavior of two bilateral pacemaker. Red indicates the pulses of pacemaker A, blue-pacemaker B. (a) 

Synchronization of rhythms with the capture of phases 1:1. (b) Periodic dynamics with the capture phase of 1:4. (c) quasi-Periodic behavior. (d) Chaotic 

dynamics. 
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In a square grid, each pacemaker Aij interacts with four neighbors 

in accordance with the schematic fig.7a. Taking into account the 

restriction of a homogeneous medium, we can assume that all the lattice 

couplings are identical, i.e. every two adjacent elements interact with each 

other according to a General law defined by identical PRC f(x,ε). 

Moreover, suppose that the relationship between a pair of elements is 

isotropic in the sense that , and is equal to one of the values or, depending 

on the corresponding arrangement of elements. This means that there is 

an anisotropy of the force of influence in the vertical and horizontal 

directions. In other words, if two pacemakers are neighbors in the vertical 

direction, they interact through f(x,ε1), and if they are horizontal 

neighbors, they are linked through f(x,ε2). 

Note that all restrictions are made to simplify the analytical form 

of the resulting model. In fact, it is possible to write expressions for a two- 

dimensional lattice of coupled pulse oscillators without any restrictions. 

We present equations that determine the iterative dynamics of the 

expected pacemaker pulses {aij}i=1,...,N; j=1,...,M based on the approach 

presented in paragraph 4.. In order to get the (n+1) th value of a single 

element aij, it is necessary to analyze all the elements of the lattice, since 

they are connected to each other by local coupling. In other words, the 

element in question cannot be affected by the others at the (n) th time step, 

since it is suppressed by the influence of other elements and remains in the 

expected state until the (n+1) th step. Thus, the dynamics of the model 

can be described by the following expression: 

T , 

 
ij 

an a 

 
min 

, 

 f ( (ij )(0,1) , ) T , ij 1 a min 

 n 1 
n a , 

ij ij  f ( (ij )(0,1) , ) T , 
ij 1 

a 
min 

min 

 ij 
 f ( (ij )(1,0) , ) T , i1 j a min i1,...,N 

 n 2 
n a , j 1,...,M 

 f ( (ij )(1,0) , ) T , i1 j a min 

 n 2 

0, 

where are the phases: 

n a , 

 a
ij 1  

 a
ij    a

ij 1  

 a
ij  


 (ij )(0,1)  
 n n 

,
 
 (ij )(0,1)  

 n n 

,
 

n 

 
T  

n 

 
T 

 a
i1 j  

 a
ij    a

i1 j  

 a
ij  


 (ij )(1,0)  
 n n 

,
 
 (ij )(1,0)   

n n 
 

n 

 
T  

n 

 
T 



The constructed model deserves a detailed study based on the 

approach developed for lattices of concatenated maps [1]. As a second 

example, consider a chain of identical pulse oscillators connected by the 

nearest neighbor principle. We will limit ourselves to a homogeneous case 

with anisotropy of the right and left directions in the force of influence 

between the nearest neighbors. A schematic picture of the chain is shown 

in Fig.7b. Similar to the above consideration, you can get: 

Figure.7. Two – dimensional (a) and one – dimensional (b) lattices of 

coupled pulse oscillators. 



n 

a , 
a  min (10) 
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i i  f (i,1
, ) T , 

i1 

a 
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where are the phases:  
 a

i1  

 a
i   


 a

i1  

 a
i   

i,1  
 n n 

,
 
i,1   

n n 
 

n 

 
T  

n 

 
T 



If, then equations (11) define the so – called open – flow model 

[159]. Since in this section of the thesis we present a General approach to 

the development of models without a detailed analysis of their behavior, 

the type of boundary conditions for both lattices was not specified. 

Therefore, for an analytical or numerical study of such systems, it is 

necessary to determine both the boundary conditions and the PRC f(x, ε). 

Usually the boundary conditions are selected as periodic, i.e. ai j+M 

≡ aij, ai+N j for a two-dimensional lattice and for a one-dimensional one 

ai+N ≡ ai. For an open stream model, the condition of a fixed left border is 

often accepted . The described models (4), (10), and (11) can be 

generalized to the natural non-uniform case, assuming the internal lengths 

of pacemakers, PRC, and influence forces to be different for different 

groups of elements. However, considering inhomogeneous anisotropic 

lattices is an extremely difficult task even for numerical analysis. The first 

attempts to study inhomogeneous lattices of concatenated maps are 

described in [25]. 
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