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Introduction 
 

The first theoretical study of cardiac arrhythmias was conducted in 1920- 

ies of the van - der - Pol and van - der - Mark, who proposed an electrical 

model of the heart [1,2]. They suggested that the activity of the heart can 

be simulated by three nonlinear oscillators corresponding to ACS, Atria 

and ventricles. This possibility was confirmed by the fact that the graphical 

representation of the processes occurring in the system of nonlinear 

oscillators had a form similar to the action potentials of heart cells. In this 

system, there was a unidirectional connection between the sinus and atrial 

oscillators, and the same connection existed between the atrial and 

ventricular oscillators. Reducing the connection between the latter, they 

found that it is possible to obtain a number of different rhythms with phase 

captures, qualitatively corresponding to the AB- blockades of the heart. 

After the publication of the work [2], many researchers tried to model the 

dynamics of heartbeats, believing it to be generated by several coupled 

oscillators. These developments can be divided into two large groups: 

analysis based on continuous - time representations (ODE systems) and 

studies based on discrete - time representations (finite-difference 

equations). In this section we will consider in detail the main stages of 

development of these concepts and the corresponding mathematical 

concepts. 

 

Discrete Models & Of A System of Interacting 
Pacemaker 

 
Consider some physical quantity ξ, which reflects the internal state of the 

biological oscillator. Let own oscillator period is equal to T0. Let's call a 

marker any event that can be clearly seen in the experiment, which is 

reached by the value ξ only once per period. Such a marker may be, for 

example, the beginning of the action potential in the cardiac preparation. 

Define the phase of the oscillator as follows. The phase of an arbitrarily 

selected marking event (for example, the maximum value of ξ) is assumed 

to be zero. At any next time t, 0 < t < T0, the phase is defined as φ = t ∕ T0 

(mod1). Since the rhythm is restored after the perturbation of the system, 

the introduced phase completely determines the state of the system. 

Suppose that an external periodic perturbation acts on a nonlinear 

oscillator. Then each external influence shifts the state of the system to a 

new state: 

φn+1 = φn + f(φn) (mod1). (1) 
The function f(φn) is called the phase response curve (PRC) and 

determines the phase change after the stimulus. The points f(φn) of the 

system state are conveniently represented lying on the circle of the unit 

radius. Then, by iterating the mapping (1), one point of the circle is 

converted to another point of the same circle. If the circle map is 

continuous, then it can be characterized by a number called the topological 

degree and equal to the number of passes φn+1 on the unit circle for the time 

in which f(φn) passes it once. In periodic perturbations of self-oscillations 

with a stable limit cycle, the dynamics is often described bymaps of a circle 

with a topological degree 0 (when the over- threshold response gives rise 

to a new cycle) or 1 (which expresses a sub- threshold response to 

stimulation). The different types of circle maps are shown in fig.1. 

Along with the topological degree, an important characteristic of the circle 

display is the number of rotations. We define it as the time average ratio 

of the external perturbation period to the period of the perturbed oscillator. 

If the rotation number is rational, ρ = M/N (here M is the number of cycles 

of the stimulator, and N is the number of cycles of the nonlinear oscillator), 

then the dynamics of the system will be periodic with the capture of the 

phase of multiplicity N/M. If the rotation number is irrational, the system 

exhibits quasi-periodic or chaotic behavior. 
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In many cases, the disturbance by a single pulse of a spontaneously 

oscillating system leads to a phase shift of the current rhythm (see, for 

example, [1,3] and references there). The magnitude of the shift depends 

on both the magnitude of the stimulus and its phase in the cycle. The graph 

of the dependence of the new phase on the previous phase (i.e., PRC) is 

either a continuous circle map with a topological degree of 1 or 0, or a 

discontinuous function. 

Phase shift experiments have been performed for a large number of 

different systems. We are interested, first of all, in the phase response 

curve experimentally obtained in the study of a cardiac drug. In [4], the 

duration of the cycle of spontaneous oscillations of Purkinje fibers after 

stimulation with short pulses of electric current was measured. The 

obtained phase response curve of the biphasic form is shown in Fig. 2. 

Based on the study of this experimental material, the following 

generalizations can be made [4]. 

 
 

 
 

 

After the disturbance, the rhythm is usually restored (after a transient 

process) with the same frequency and amplitude as before the disturbance, 

and its phase is shifted. Depending on the phase, a single stimulus can 

either lengthen (early stimulus) or shorten (late stimulus) the duration of 

the perturbed cycle. At some amplitudes of the stimulus, there are obvious 

discontinuities. 

 

To further study the dynamics of any constructed model, it is necessary, 

having experimentally obtained CFO, to find a good analytical 

approximation of this curve. This will allow us to investigate the main 

features of the behavior of the system under consideration. 

The main characteristic of the desired function is the need to depend 

directly only on two physical parameters: the amplitude of the stimulus and 

the phase of the applied perturbation. All other (so-called "internal") 

parameters describing the course of the curve should (ideally) be reduced 

to the two indicated. 

Model of Two Interacting Pacemakers Taking Into 

Account the Refractoriness Time 

In this section, we consider two interacting leading centers (pulse 

oscillators) that can be pacemakers in cardiac tissue, construct a model of 

such interaction, and investigate its behavior. 

 

The Principle of Constructing a Model 

Consider a system of two interacting nonlinear pulse oscillators fig.3. 

Let the momentum of the first oscillator with the period of undisturbed 

oscillations appear at the moment of time, and the momentum of the 

second oscillator with the period of undisturbed oscillations appear at 

the moment. Then the moments of time of occurrence of the following 

pulses are defined as (2): 
 

tn+1 = tn + T1, τn+1 =  τn   + T2 . (2) 

Figure.1. Different types of circle maps: (a) reversible, topological degree 1; (b) irreversible, topological degree 1; (c) piecewise continuous; (d) topological 
degree 0. 

Figure.2. The phase response curve of cardiac tissue obtained experimentally [4]. The graph shows the dependence of the duration of the perturbed cycle 
(expressed in relative fractions of the duration of the cycle in the control) on the phase of the cycle in which the pulse is applied. 
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εh(x). For fig.2 the corresponding phase diagram obtained as a result of 

 1 1 

 

 

 
 
 

  Figure.3. The scheme of construction of the model describing the system of two interacting nonlinear oscillators.  
 

Now, assuming that under the influence of the second pulse, the period of 

the first oscillator will change by some value Δ1((τn − tn) ∕ T1) (where the 

expression in parentheses shows that this value depends only on thephase 

of the second pulse relative to the first), then the corresponding expression 

for tn+1 will look like: 
tn+1 = tn + T1 + Δ1((τn − tn) ∕ T1). When you consider that τn+1 > tn+1 , that for 

τn+1 get a similar expression: 
τn+1 = τn + T2 + Δ2((tn+1 − τn) ∕ T2). Dividing both of these expressions by 

T1, we find the corresponding expressions for the phases (3): 

 

oscillators leads to the appearance of an additional nonlinear term. Thus: 

xn+1 = g(xn) + f2[a
−1(1 − g(xn))] (mod1). 

Function f1(x), f2(x) called phase response curves, which generally do not 

coincide with each other. Both oscillators are sources of action potentials 

in the same tissue, have a similar nature, and can be considered functions 

f1(x) and f2(x) approximately thesame. 
It is known that the response of the oscillator to an external stimulus 

depends only on the stimulus phase of its amplitude and the PRC changes 

its shape when the amplitude of the external influence changes. This 

means that the functions that define the type of phase response curves 

 1 must depend on one parameter that determines the magnitude of the 

n1 n  
T 
1 (n n ), amplitude. In the case of this dependence can be considered 

 T1 1  t T 1   (3) 
mγhu(lxti)p,lifca(txiv)e=. Tεhhe(nxt)h.e phase response curves will be written as: f1(x) = 

n1   n    2     2    n  
   1      1 (n n ) 

   n 
. Where h(x) − periodic function, h(x +1) = h(x). Under this assumption, 

 T T  T2 T2 T2 Tn  the formula (5) will take the form: 
xn+1 = xn + a + εh[(1 ∕ a)(1 + γh(xn) − xn)] − γh(xn) (mod1), 

Here φn = tn ∕ T1 − phase of the first perturbed oscillator relative to the 

undisturbed (with the period T1), δn = τn ∕ T1 − the second phase of the 

disturbed oscillator with respect to the same first oscillation with a period 

of T1. Introducing the parameter a = T2 ∕ T1 (the ratio of the 
eigenfrequencies of both oscillators) and labeling f1 = Δ1 ∕ T1, f2 = Δ2 ∕ T1, 

after the transformations we obtain (4): 

(6) 
Let's focus on the study of the display (6) sinusoidal functions [6 − 8]. 

 

Phase Diagrams for Systems with Mutual Influence 

Let us now dwell on the case of two-way communication of two pulse 



n1  n  f1 (n  n ), (4) systems. Suppose that the effect of the first oscillator on the second one is 


    a  f 

 1 
( 1 f (   )   ) 


. relatively small, ε=0.1. As a PRC we will take f '1(x) = γh(x), f '2(x) = 

  n1 n 2  a n 1 n n n  numerical study is presented. It depicts for comparison the same steady 
  

Since we are interested in the phase difference of the described oscillators, 

the final expression, which will be used in the future, is as follows (5): 
x = x  + a + f [(1 ∕ 2)(1 + f (x ) − x )] − f  (x ) (mod1), (5) 

grips phases ratio N:M. Here n cycles of the second oscillator account for 

M cycles of the first one. It is easy to see that taking into account the mutual 

influence of the oscillators leads to bending and splitting of the capture 

n+1 n 2 1    n n 1 n areas. Note also that even at small values of the amplitude of the second 

Where xn+1 = δn − φn. 

Expression g(xn) = xn + a + f1(xn), included in the right side of the equation 

is a circle map describing the effect of the constant perturbation on the 

nonlinear oscillator. Taking into account the mutual influence of 

stimulus, the main captures are superimposed on each other. The dynamics 

of the system thus becomes multistable. This corresponds to the situation 

when the limiting behavior of the display (6) depends on the initial phase 

difference of the oscillators x0. 
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For fig.4 the circle map (6) constructed for some values of a and γ is given. 

It kind of confirms that with increasing γ the system dynamics becomes 

more complicated, and the display ceases to be monotonous, and it appears 

the intervals with the slope, a large 1. It can be shown [9] that for continuous 

circle maps this leads to multistability and chaoticdynamics. 

 

Polynomial Model 

 
As another approximation of the experimental CFO we take the following 

polynomial function (7): 

h(x) = Cx2 (1/2 − x)(1 − x)2 . (7) 

 
We choose the normalization factor C in such a way that the amplitude of 

h (x) equals 1, i.e. C = 20√5 (see Fig.2). Then, taking into account the 

refractoriness, leaving the function continuous, and ε = 0, the map (2) will 

where h(x) is defined from (7). In contrast to the sinusoidal approximation, 

this curve at x = δ touches the abscissa axis. In other words, this means that 

the polynomial CFO, taking into account the refractoriness on the entire 

segment [0; 1], is a smooth function. Let us now compare several cases 

with different values of the refractor time and the amplitude of the 

influence ε of the first oscillator on the second. 

 
Change of phase diagrams with increasing refractoriness (case of one-way 

interaction of oscillators) 

Consider the system (6,8) without taking into account the mutual influence 

of oscillators and the period of refractoriness (in other words, ε 

= δ = 0), i.e. assuming in (10) δ = 0. For fig.5a the regions of phase captures 

in parametric space (a, γ) obtained as a result of numerical investigation 

are presented. In this figure, the color gamut is much richer (visualization 

take the form
x

(8)

: 
a, 0  x

   , (mod1), was carried out using Matlab R2007b, and the equations 

 n 

x 



n 
 

x  

were solved using Microsoft Visual Studio C++ 2010 Professional (x64)). 

 
(8) Stable phase captures up to 10:10 multiplicity captures are shown here. It 

n1 x  aCh n ,   x  1,(mod1), can be seen that due to the smoothness of the polynomial function, the 

 n 
   1 

 n boundaries of the resonance languages blur significantly less than in the 

previous phase diagrams. 
 

  Figure.5. Phase patterns of polynomial mapping (8): (a) δ = 0,3; (b) δ =0,5.  

Figure.4. Areas of stable phase captures for piecewise linear mapping of a circle (2) with a PRC of the form (6) taking into account the mutual influence 

of oscillators. 
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The "tails" of the main capture areas are slightly split and overlap at high 
temperatures. Note that, as follows from the analysis of the system (10)

 
with δ = 0,1 (Fig.5b), the introduction of refractoriness time leads to 

the broadening of the regions of phase captures and significant splitting andoverlapping of their "tails". 

For fig.6a is a numerically constructed phase diagram in the case δ = 0,3. For comparison, this figure shows the same stable captures of multiplicity N:M as 

in fig.5. It is noticeable that with an increase in refractoriness, the capture measure of the multiplicity of 2:3 increases while the measures of the main captures 

of 1:1 and 1: 2 decrease. 

The phase capture regions in the case δ = 0,5 are shown in Fig.6b. This phase pattern is qualitatively different from the charts described above. The 2:3 

area stretches out and looks like an arrow. 

 

 
 

  Figure.6. Phase capture regions of the display (8): (a) δ = 0; (b) δ = 0,1.  
 

The shapes of the 3:4 and 3:5 regions also resemble arrows at δ = 0.7 

(Fig.7a). In the case of δ = 0.9, all phase captures degenerate into vertical 

lines. This situation is shown in Fig.7b. note that at δ = 1 there is no 

dependence on the amplitude of the stimulus γ (the system does not 

respond to external influence). In conclusion, consider the system (2) with 

δ = 0,1 and ε ≠ 0 in the parametric spaces (a, γ) and (ε, γ). As an 

approximation function, again take (8). 

 

 

  Fig.7. Phase diagrams display (8): (a) δ = 0.3; (b) δ = 0.5.  
 

Phase of Seizures in the Space (A, Γ) 

https://www.auctoresonline.org/journals/psychiatry-and-psychotherapy
http://www.auctoresonline.org/


J International Journal of Neural Plasticity 

  Auctores Publishing– Volume 2(2)-029www.auctoresonline.org Page-6 

 

 




 

Let us first assume that the effect of the first oscillator on the second is relatively 

small. For fig.8a the phase diagram showing the possible modes of behavior of 

the system of two interacting oscillators for this case is given. Mutual influence 

at sufficiently small values leads to similar effects, mutual influence at 

significantly small values leads to similar effects γ. The increase in the 

refractoriness time in the model with ε = 0.1 causes a stronger curvature of the 

main captures and the disappearance of the splitting regions. If we increase the 

value of the influence of the first oscillator to, for example, ε = 0.5, we see a 

very complex structure with a much stronger deformation of the areas of the 

main captures fig.8b. The 1:1 area will degenerate into a narrow strip, while the 

1:2 capture area will grow due to the appearance of long narrow languages. 

Numerical analysis shows that with the growth of ε to a value of ~ 0.5, 

the area occupied by the resonance zones becomes larger. This leads to 

almost complete mixing of languages, so that it is possible to detect 

zones of different multiplicity in a sufficiently small neighborhood of 

almost any point (a, γ). However, for these values, self-similar 

structures are still clearly visible. As the nonlinearity parameter ε 

increases further, the resonance zones decrease, taking up less and less 

space. In this case, there is also a very complex picture. Thus, the 

increase in the force of influence of the oscillators leads to mixing of 

the initially sufficiently ordered structure in space (a, γ). 

 

 

 Figure.8. Phase capture areas of a system of oscillators with two-way coupling (δ = 0,1): (a) ε = 0,1: (b) ε = 0,5.The seizure phases in the space (ε, γ)  

  Figure.9. Phase captures in the stimulus amplitude space (δ = 0,1): (a) a = 2: (b) a = π/2.  

Let us now construct phase diagrams of interacting oscillators in the space 

of the influence amplitudes (ε, γ). In the first example, let a = 2 (fig.9a). 

This value of the ratio of periods means that for ε = γ = 0 the number of 

rotations is rational, and the dynamics of the system is periodic with a 

capture of 1:2. With increasing nonlinearity, it is possible to obtain phase 

capture regions with a different multiplicity, even at large values of ε and 

γ, the periodic behavior of the system with a capture of 1:2. 

The opposite situation is observed for a = π/2. Here, the number of 

rotations is irrational at zero stimulus amplitudes, and the system detects 

a quasiperiodicity or chaotic property. With the growth of nonlinearity, 

where function f is defined by expression (10): 

f = x + a + εh[a-1 (1 + γh(x) − x)] − γh(x), (10) 
where a and q are parameters. The set of parameters here are a, γ, ε and 

δ. If the map (11) has a cycle p of period t equal to the perturbation period, 

t = τ, p = x1, x2,..., xt, the points forming this cycle will obey the following 

system of equations (11): 

x  f (x , q ), 
x2 f (x 1,  q )1, 

3 2 2 

 

there is a possibility of periodic behavior (fig.9b). In the case of 

sufficiently large ε, there is a decrease in the area occupied by the 

resonance zones. For irrational values of a, the probability of complex 

system behavior (8) is quite high. 



...................... , 

x1    f ( xt , qt ), 

 
(11) 
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Stabilization of Complex Dynamics and the Possibility of Full Control 

 
Any cycle of the form x0, x2,..., xN at any xi ϵ σ is sustainable (this cycle includes a critical point), this statement allows us to practically use this method of 

controlling the dynamics of systems, which are effectively described by such families. Write periodically perturbed mapping explicitly: 

xn1  f (x n , q), 
 

To solve the inverse problem, i.e. to find the parameter values at which the map (9) has a given cycle p, it is necessary to express the valuesfrom 
(11) qi. It is clear that not for all possible xi the obtained values of the parameters will satisfy the ratio qi ∈  Q. However, i if this is true for any cycle p = 
x1, x2,..., xt you can find the values of the parameters q1,q2,..., qt, 
for which the perturbed map (9) has such a cycle. 
If the multiplier of the cycle β (p) = Πt

i=1 f '(x) < 1, it's stable. When among the points forming the cycle, there is a critical xc, the multiplier is always less 
than one, which ensures stability. In case of unilateral influence of pacemakers on each other, at ε = 0, the display at γ ≥ (√5 ∕ 5) for polynomial PRC taking 
into account refractoriness (pic.10a). The functions f(x), determined from (10), under the mutual influence of 

q  g(q),  x  M , q Q, (9) oscillators are shown in (pic.10b) for polynomial PRC. 

 n1 

 

 

 
 

Figure.10. Functions f(x) (10) at different h(x) and parameter values. The ratio of periods a is fixed and is 2 (a) h(x) – polynomial PRC, ε = 0, γ =0.9, δ =0.0. 

(b) h(x) is a polynomial PRC, ε = 0.5, γ = 0.9, δ =0.5. 
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Set of values p = x1, x2,., xt for whom qi ∈  Q and inequality β (p) = Πt i=1 f 
'(x) < 1, forms a certain area in the coordinate space R. Each point of this 
region corresponds to a stable cycle of disturbed mapping. Using the system 
of equations (11), it is possible to obtain the corresponding region 

in the parametric space. This enables full control of the system behavior 

described by the mapping (12). 

From the point of view of applications to the active environment, this 

means that a simple parametric impact can control its dynamics. Moreover, 

if the behavior of the medium is chaotic, with the help of such control it is 

easy to stabilize it and bring the system to the required dynamic mode of 

motion [10]. 

Thus, the main result of this section is quite important for applications: for 

the systems described by the map (12), there are almost always such 

external influences, in which such systems will have a prescribed (pre- 

selected) dynamics. 

 

Conclusion 
 

The Analogy with Abnormal Heart Rhythms 
 

In conclusion, we draw an analogy between the results and pathological 

conditions of cardiac tissue. With the help of the constructed models it is 

possible, for example, to describe the interaction of sinus and ectopic 

pacemakers, PRC and ABU, and the impact of external disturbances on the 

sinus rhythm. If, for example, consider the first pulse oscillator PRC, and 

the second – ABU, it can be found that some stable phase captures 

correspond to the observed pathologies in clinical practice. In this case, 

among the various grippers are constructed as normal sinus rhythm 

(capture ratio 1:1) and classical rhythms Wenkebach (captures 

multiplicity N:(N-1)) and N:1 AB-blockade. If the first pulse count system 

of the ABU, and the second ACS, then appear inverted rhythms 

Wenkebach (similar to direct, but that changes the role of the ventricles 

and the Atria) observed in some patients. 
It should be noted that the considered response functions f1(x) = γh(x), f2(x) 
= εh(x) for different approximations of the form, the functions h(x) are 

model. They were taken to analyze the characteristic features of the 

dynamics of two nonlinear interacting oscillation sources. In practice, these 

functions should be chosen taking into account additional physical 

assumptions about the nature of the interaction and take into account the 

experimental data on the response of a single oscillatory system to single 

pulses of external perturbation. For example, in [11] the effect of short 

pulses on aggregates of spontaneously oscillating cells from the embryo 

heart was considered. The experimentally obtained phase response curves 

were approximated by exponential functions, and the "internal" 

parameters were chosen for the best correspondence of the curve graphs to 

the experimental points. Their dependence on physical parameters was 

also chosen in this way. As a result, the phase diagram obtained 

numerically corresponded well enough to the real dynamics of the system. 

Presence of wide areas of phase captures (pic.5 − 9), in such systems, 

various types of synchronization of two oscillators are possible, which 

qualitatively correspond to some types of cardiac arrhythmias. The phase 

diagram allows to reveal under what conditions of interaction (i.e. at what 

values of parameters a, γ, ε and δ) this or that kind of synchronization is 

possible. Moreover, all the phase patterns presented in this paper indicate 

that with increasing nonlinearity (i.e., with the growth of the γ parameter), 

the regions with different captures begin to overlap. Knowledge of such 

areas and the dynamics of the system in these areas allows by external 

perturbation (for example, a series of single pulses) to withdraw the system 

from the unwanted mode of synchronization to a more favorable mode, 

which is vital. 

Analysis of phase diagrams makes it possibleto find ways to control such 

systems. We consider the effect of additional periodic pulse action on the 

behavior of interacting oscillatory subsystems. The study of possible 

modes of behavior of such a system by varying the frequency and 

amplitude of the external perturbation will lead its dynamics to a 

predetermined, for example, to complete suppression of the ectopic sine 

pacemaker. This problem, considered in the next section, is veryrelevant 

for the General theory of control of nonlinear dynamic systems and 

excitable media, in particular, cardiac tissue, which is satisfactorily 

described in the models [12, 13]. 

Summary 

 
Modern methods of removing the heart from the state of fibrillation 

are very rigid (supply of a short electrical pulse of a huge voltage 

and a large current). The development of nonlinear dynamics and 

synergetics made it possible to understand that such a force effect is 

not necessary. Often enough weak electrical effects directly on the 

heart muscle. Precisely, if there are spiral waves with opposite 

directions of rotation in the medium, then, choosing the phase and 

frequency of external action, it is possible to achieve the movement 

of the centers of the two waves towards each other and their 

annihilation. Now the word for careful experimental research. The 

theory of dynamic systems describes many processes inherent in 

active media, including some types of arrhythmias [1, 3]. Since 

arrhythmias are caused by certain disorders in the heart muscle and, 

therefore, are pathological conditions, the modeling of such systems 

is of great practical interest and can bring closer to solving the 

problem of the possibility of controlling their behavior through 

external influences. This, in turn, allows us to come close to the 

problem of soft withdrawal of active systems from the state of 

developed space–time chaos that characterizes some types of 

pathologies [14-17]. A noteworthy work is presented in the 

publication [18]. In this paper, we have implemented a model of the 

heart, which describes the real behavior of rhythmic and arrhythmic 

processes in the heart. 
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