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Abstract:  

This paper presents the dynamic model of the soliton. Based on this model, it is supposed to study the state 

of the network. The term neural networks refers to the networks of neurons in the mammalian brain. 

Neurons are its main units of computation. In the brain, they are connected together in a network to process 

data. This can be a very complex task, and so the dynamics of neural networks in the mammalian brain in 

response to external stimuli can be quite complex. The inputs and outputs of each neuron change as a function 

of time, in the form of so-called spike chains, but the network itself also changes. We learn and improve our 

data processing capabilities by establishing reconnections between neurons. 

Keywords: nonlinear dynamic system; cylindrical shock waves; soliton; passive dispersed media; active 
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Introduction 

The term neural networks refers to the networks of neurons in the 

mammalian brain. 

Neurons are its main units of computation. In the brain, they are connected 

together in a network to process data. This can be a very complex task, and 

so the dynamics of neural networks in the mammalian brain in response 

to external stimuli can be quite complex. The inputs and outputs of each 

neuron change as a function of time, in the form of so-called spike chains, 

but the network itself also changes. We learn and improve our data 

processing capabilities by establishing reconnections between neurons 

[1–3]. The training set contains a list of input data sets along with a list 

of corresponding target values that encode the properties of the input data 

that the network needs to learn. To solve such associative problems, 

artificial neural networks can work well-when new data sets are governed 

by the same principles that gave rise to the training data [4]. 

 

Neural networks 

The mammalian brain is made up of different areas that perform 

different tasks. The cortex is the outer layer of the mammalian brain. We 

can think of it as a thin sheet (2 to 5 mm thick) that folds on its own to 

increase its surface area. The cerebral cortex is the largest and most 

developed part of the human brain. It contains a large number of nerve 

cells, neurons. The human cortex contains about 1010 neurons. They are 

connected by nerve threads (axons) that branch out and end in synapses. 

These synapses are connections to other neurons. Synapses connect to 

dendrites, branched extensions of the body of a nerve cell designed to 

receive input signals from other neurons in the form of electrical signals. 

A neuron in the human brain can have thousands of synaptic connections 

to other neurons. The resulting network of connected neurons in the cortex 

is responsible for processing visual, audio, and sensory data. Figure1 

Neurons in the cerebral cortex (the outer layer of the brain, the largest and 

most developed part of the human and mammalian brain).  
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Figure 1. Neurons in the cerebral cortex (the outer layer of the brain, the largest and most developed part of the human and mammalian brain). 

Figure 2, shows a more schematic view of the neuron. The information is processed from left to right. On the left are the dendrites that receive 

the signals and connect to the cell body of the neuron, where the signal is processed. The right part of the picture shows the axon through which the 

output is directed to the dendrites of other neurons. 

 
 

Figure 2. Schematic representation of a neuron. Dendrites receive input signals in the form of electrical signals through synapses. The signals are 

processed in the cell body of the neuron. The output signal is transmitted from the body of the nerve cell to other neurons via the axon. 

The information is transmitted as an electrical signal. The information is transmitted as an electrical signal. Figure 3, shows a Schwann cell, which can 

be in a neutral state and create a left positive or right negative chirality on the axon.  
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Figure 3. Shows a Schwann cell, which can be in a neutral state and create a left positive or right negative chirality on the axon. 

Figure 4, shows an example of the time series of the electric potential of a 

pyramidal neuron [5]. The time series consists of an intermittent series of 

electric potential jumps. Periods of rest without spikes occur when the 

neuron is inactive, and during periods rich in spikes, the neuron is active. 

Figure 4D, Temporary portraits of the system (1). 

 

Figure 4. Shows an example of the time series of the electric potential of a pyramidal neuron. series consists of an intermittent series of electric 

potential jumps. 
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The mathematical dynamic model of the soliton 

The mathematical dynamic model of the soliton is represented by the 

equation (1) [6,7]. 

  

 

Results 

The active states of the system are shown in Figure 5a, and their active 

states are shown in Figure 2(top) in yellow and Figure 4(E,F) in green. 

The active states of the system are shown in Figure 5b, and their 

active states are shown in    Figure 2(bottom) in yellow and Figure 4E in 

purple. Creates a continuous chaotic modulation. 

Time portraits of the system (1) are shown in Figure 5(a), active with 

positive a =1.0, a1 = 0.2, a2 = 0.1, a3 = 1.0, b = –2.0, k = 0.045, ω = 64π 

and negative a =–1.0, a1 = 0.2, a2 = –0.1, a3 = 1.0, b = 2.0, k = 0.045, ω 

= 64π chirality.  

Figure 5(b), passive positive a =0.09, a1 = 0.2, a2 =0.1, a3 = 1.0, b = –

0.09, k = 0.045, ω = 64π and negative a =–0.09, a1 = 0.2, a2 = –0.1, a3 = 

1.0, b = 0.09, k = 0.045, ω = 64π chirality: 

 

Figure 5. Temporary portraits of the system with chirality. (1) at : a) x0 = 0.4, y0 = 0.4, z0 = 2.5, b) 

x0 = 0.4, y0 = 0.4, z0 = 0.09. 

The inactive state of the system is shown in Figure 6a its active state is 

shown in Figure 4(A,C) in yellow. It is presented in a limited time frame. 

The inactive state of the system is shown in Figure 6b its inactive state is 

shown in Figure 4(B,C) in blue and Figure 4F in purple. It is presented in 

a limited time frame. 

Time portraits of the system (1) are shown in Figure 6(a) active with 

positive 

a =1.0, a1 = 0.2, a2 = 0.1, a3 = 1.0, b = 2.0, k = 0.045, ω = 64π and negative 

a =–1.0, a1 = 0.2, a2 = –0.1, a3 = 1.0, b = –2.0, k = 0.045, ω = 64π lack 

of chirality. 

Figure 6(b) passive positive a =0.09, a1 = 0.2, a2 =0.1, a3 = 1.0, b = 0.09, 

k = 0.045, ω = 64π and negative a =–0.09, a1 = 0.2, a2 = –0.1, a3 = 1.0, b 

=– 0.09, k = 0.045, ω = 64π lack of chirality: 
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Figure 6. Temporary portraits of the system with no chirality. (1) at : a) x0 = 0.4, y0 = 0.4, z0 = 2.5, b) x0 = 0.4, y0 = 0.4, z0 = 0.09. 

Summary: 

Artificial neural networks use a highly simplified model for the 

fundamental computing unit-the neuron. In its simplest form, the model 

is simply a binary threshold unit. The network performs these calculations 

sequentially. Usually, discrete sequences of calculation time steps are 

considered, t = 0,1,2,3,.Either all neurons are updated simultaneously at 

one time step (synchronous update), or only one selected neuron is 

updated (asynchronous update) [8–19]. We proposed a different approach 

to use the wave-soliton approach, taking into account chirality. In the 

presence of different chirality, three states are possible, with positive 

chirality, the signal is transmitted without loss, with negative chirality, the 

signal creates pulsations in certain parts of the axon. In the absence of a 

signal, a chaotic self-excitation is observed in the axon. A run a way with 

no chirality exists for a short time and represents a stop signal. The 

conclusion is that the soliton model can be used to study the behavior of 

an individual axon. 
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