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ABSTRACT  

Clinical analysis of the electromyogram is a powerful tool for diagnosis of neuromuscular diseases. There fore, 

the detection and the analysis of electromyogram signals has he attracted much attention over the years. Several 

methods based on modern signal Processing techniques such as temporal analysis, spectro-temporel analysis ..., 

have been investigated for electromyogram signal treatment. However, many of these analysis methods are not 

highly successful due to their complexity and non-stationarity. The aim of this study is to analyse the EMGs 

signals using nonlinear analysis. This analysis can provide a wide range of information’s related to the type of 

signal (normal and pathological 
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I. Introduction:    
 

The EMG signal is a biomedical signal that measures electrical currents 

generated in muscles during its contraction representing neuromuscular 

activities. The nervous system always controls the muscle activity 

(contraction/relaxation). Hence, the EMG signal is a complicated signal, 

which is controlled by the nervous system and is dependent on the 

anatomical and physiological properties of muscles.  

Detection and analysis of EMGs signals with powerful and advance 

methodologies is becoming a very important requirement in biomedical 

engineering. More recently, nonlinear tools have been introduced to 

analyze the EMGs signals; among them, the recurrence quantification 

analysis (RQA) and the bispectral analysis. 

The recurrence quantification analysis (RQA) was shown to be 

particularly promising for the detection of muscle status changes [1]. The 

recurrence plots have been widely explored scientific fields for 

understanding the dynamics of system. Recurrence quantification 

analysis (RQA) methods for biological signals such as 

electroencephalogram [2] and EMG [3], are useful since it does not 

require large data and does not depend on statistical nature of signal [4].  

 

In addition, many signals have nonlinearity and non-Gaussian behavior, 

and such signals cannot be examined properly by 2nd-order statistical 

methods. Thus, higher-order statistical methods have been proved. The 

HOS was first applied to real signal processing problems in the 1970s and 

since then it has continued to be applied in many different areas, such as 

economics, speech signal processing, noisy and artifact removal, 

biomedical signal processing, and optics. Since EMG signals are 

nonstationary and non-Gaussian signals, they should be examined by 

HOS methods. Bispectrum, which is the Fourier transform of the 3rd-

order cumulant, can be applied to nonlinear and non-Gaussian signals to 

extract nonlinear information. [5] 

 The electromyographic (EMG) signals are extensively used on feature 

extraction methods for movement classification purposes. High-order 

statistics (HOS) is being employed increasingly in myoelectric research. 

HOS techniques could be represented in the frequency domain (high-

order spectra, e.g., bispectrum, trispectrum) or in the time domain (higher-

order cumulants). 

 

The objective of this article is to applied the non-linear analyze of the 

EMGs signals (normal, myopathy and neuropathy)  

 

I. Study of energy 

 

In the literature various approaches can be found to extract the EMG 

envelogram which will be useful in diagnosing various pathological 

cases. There are several methods to extract the envelope such as the 

calculation of the square of the signal or absolute value (equations (1–2)). 

The square of the samples of a given signal (equation (1)) makes it 

possible to evaluate its energy in the temporal field. However, and as 

illustrated in Figure.1, samples of high amplitude are very heavily 

favoured over those of low amplitude. The amplitude of the energy 

calculated by the absolute value [equation (2)] of the samples of the signal 

also disadvantages samples of low amplitude. 

Two other approaches that can be used are Shannon entropy and Shannon 

energy; see equations (3) and (4). These approaches give greater weight 

to the average intensities of the signal; therefore, the noise of low intensity 

and high intensity of disturbance will be mitigated. Similarly, the 

Shannon entropy [equation (3)] does not yield the true proportions of the 

signal, attenuating more samples of very low amplitude for the benefit of 

large-amplitude oscillations. The Shannon energy [equation (4)] proves 

the median approach, making it possible to generate a representation that 

takes account of the physiological attenuation of sounds as well as 

artefacts of large amplitude while recording the EMG signal. The EMG 
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signal energy representations [Figure.2] highlight the interest of the 

Shannon energy. According to these figures, we can see that only the 

Shannon entropy and the Shannon energy can absorb the magnitude of 

oscillations of high intensity as well as those in low amplitudes. So, they 

are the most suitable for the treatment of EMG signal. 

 Square of the energy:                              En =

 S(t)2                                                                      (𝟏) 

 Absolute value of the energy :        V =

|S(t)|                                                                           (𝟐) 

 Shannon entropy :                  Ep =  −|S(t)| ∗

log|S(t)|                                                         (𝟑) 

 Shannon energy:                 Es = −S(t)2 ∗

log S(t)2                                                               (𝟒)  

 

 

Figure 1: Temporal energy representation of the signal s (t). 
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(d) 

 
(e) 

 

Figure 2: Energy representations of Normal EMG signal. (a) EMG signal. (b) Squared EMG signal. (c) Absolute value of the EMG signal. (d) 

Shannon energy of the EMG signal.  (e) Shannon entropy of the EMG signal. 

 

II. Material and Methods 

 

1. Database 

 

In this study, the database of EMG signal , includes three cases of EMGs 

signals (Normal, myopathy and Neuropathy) , set from  Medelec Synergy 

N2 EMG Monitoring System (Oxford Instruments Medical, Old Woking, 

United Kingdom).[6] A 25mm concentric needle electrode was placed 

into the tibialis anterior  muscle (TA) of each subject. The patient was 

then asked to dorsiflex the foot gently against resistance. The needle 

electrode was repositioned until motor unit potentials with a rapid rise 

time were identified. Data were then collected for several seconds, at 

which point the patient was asked to relax and the needle removed. The 

following figure [Figure.3] and Table.I, shows three examples of EMG 

data from:  a 44 year old man without history of neuromuscular disease; 

a 62 year old man with chronic low back pain and neuropathy due to a 

right L5 radiculopathy; and a 57 year old man with myopathy due to 

longstanding history of polymyositis, treated effectively with steroids and 

low-dose methotrexate. The data were recorded at 50 KHz and then 

downsampled to 4 KHz. During the recording process two analog filters 

were used: a 20 Hz high-pass filter and a 5K Hz low-pass filter. [Figure.3] 

 
(c) 

Figure 3: Temporal representation of Electromyography signals: (a) a normal case (b): a myopathy case (c): a neuropathy case. 

 

Signal Age Sex Pathology Muscle Electrode 

EMG1 44 Man Any tibialis anterior A 25mm concentric needle electrode 

EMG2 57 Man Myopathy tibialis anterior A 25mm concentric needle electrode 

EMG3 62 Man Neuropathy tibialis anterior A 25mm concentric needle electrode 

 

Table I: Database of EMGs signals. 
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2. Higher Order Statistics (HOS) theory for 

EMG signal analysis 

 

Frequency domain techniques are amongst the most fundamental and 

useful tools in the area of signal processing. Conventional techniques are 

generally based on the analysis of the first and second order moments and 

cumulants and their spectral representation. These techniques provide all 

the information available from the signal only if the underlying process is 

Gaussian and is operated on by a linear system. 

For non-Gaussian processes and nonlinear systems, more information can 

be obtained from the higher order moments and cumulants (3rd order to 

Nth order) and their spectral representation (higher order spectra). The 

second order spectrum suppresses phase relationships, whereas 

information about the phase of the underlying system is available from 

higher order spectra [7].  

Higher order statistics are useful in blind deconvolution and system 

recovery. As they do not suppress phase information, they may be applied 

to non-minimum phase and nonlinear systems. As they are able to recover 

information about non-Gaussian signals, they are useful in systems 

involving non-Gaussian input signals. 

In this paper we will use, the Bispectrum, to estimate the system 

information. The bispectrum is the most accessible of the higher order 

spectra as it is the simplest to compute and its properties have been well 

explored [7] - [13]. 

 

3.  Non-linear parameters Analysis of normal 

and pathological EMGs signals: 

a. Recurrence quantification analysis : 

Recurrence quantification analysis (RQA) is a nonlinear method that 

discovers recurring patterns, commonly referred to ashidden rhythms. 

This nonlinear method can be used to analyze physiological signals. To 

be specific, recurrence plots are used to investigate the nonlinear 

prediction of timeseries generated by dynamical systems driven by 

slowly varying external forces. Recurrence plots are established based 

on time series data. The first step is to form a vector: 

𝑋𝑛 = [𝑥(𝑛)𝑥(𝑛 + 𝐿), … . , 𝑥(𝑛 + (𝑚 − 1)𝐿)]                             (5) 

Where m is the embedding dimension and Lis the lag. Xn represents a 

multi-dimensional process as a trajectory in m-dimensional space. We 

can define two different points on that trajectory, say Xi and Xj. The 

index pair (i,j) is used to specify an element for a binary N*N matrix. 

The entry is defined as 

𝑎𝑖,𝑗 = {
1 𝑖𝑓 ‖𝑋𝑖 − 𝑋𝑗‖ ≤ 𝑟

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                                             (6) 

Where ‖… ‖ indicates the Euclidean distance andris a fixed radius. The 

binary matrix A can be represented as a N*N image by putting a white 

pixel whenever 𝑎𝑖,𝑗 = 0 and a blue pixel otherwise. 

The recurrence statistics, which is called recurrence quantification 

analysis (RQA), has been introduced for measuring quantitative 

information within recurrence plots [14]; subsequently it was extended 

with new measure of complexity by Marwan [15] [16]. It is a method of 

nonlinear data analysis which quantifies the numbers and duration of 

recurrence of a dynamical system presented by its state space vector.  An 

EMG recurrence plot, which includes the recurrence statistics, is a 

representation of the nonlinear EMG signal that provides rich information 

about EMG patterns. We focus on the following three features of the 

recurrence plot as they best describe the behaviour of the underlying EMG 

signals: 

a. Recurrence rate (RR) is the density of recurrence points in a 

recurrence plot, which is defined as: 

            𝑅𝑅 =
1

𝑁2
∑ 𝑅𝑖,𝑗

𝑁
𝑖,𝑗                                                  (7) 

            Where N is number of points on the phase space trajectory 

b. The next measure is the percentage of recurrence (determinism: 

DET) points that form diagonal structures to all recurrence 

points in the recurrence plot (R) reflecting deterministic or 

predictable characteristics in dynamical systems [17] The line 

segments are parallel to the main diagonal. Higher value of 

DET means higher periodicity. The vector point (i and j) in the 

recurrence plot is considered as recurrent if the distance 

between the vectors) yi and  yj is less than the threshold. The 

value of DET is given as below. The DET is usually expressed 

as a percentage. In this analysis, the DET value is taken between 

0 and 1 for representation. 

          𝐷𝐸𝑇 =
∑ 𝑙𝑃(𝑙)𝑁

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑙𝑃(𝑙)𝑁
𝑙=1

                        (8)                                                        

Where 𝑃(𝑙)is the frequency distribution of the lengths 𝑙of the diagonal 

lines.  

c. Complexity feature (CPX) is derived from the RQA measure 

determinism. This feature is previously reported for analyzing 

physiological signals (EEG) and found to be useful [18] 

Higher value of CPX indicates origin of signal from highly 

irregular or chaotic system. This may be due to presence of 

random series and may be due to higher nonlinearity. Its 

represented as : 

                          𝐶𝑃𝑋 = −20 𝑙𝑜𝑔10 𝐷𝐸𝑇                                                                                  

(9) 

b. Bispectral Analysis  

Bispectrum analysis reveals the phase relation between components of a 

signal [8][19]. Unlike the power spectrum, the bispectrum is capable of 

extracting extra information from biological signals such as an EMG 

signal, which is non-Gaussian and nonlinear. The bispectrum is defined 

as the Fourier transform of the 3rd-order cumulant. 

The 3rd-order cumulant of a discrete signal x(k), which is stationary and 

has a 0 mean, is defined as [19] 

𝑪𝟑𝒙(𝒏𝟏, 𝒏𝟐) = 𝐜𝐮𝐦{𝒙(𝒌)𝒙(𝒌 + 𝒏𝟏)𝒙(𝒌 + 𝒏𝟐)} = ⟨𝒙(𝒌)𝒙(𝒌 +

𝒏𝟏)𝒙(𝒌 + 𝒏𝟐)⟩ − ⟨𝒙(𝒌)⟩{⟨𝒙(𝒌)𝒙(𝒌 + 𝒏𝟏)⟩ + ⟨𝒙(𝒌)𝒙(𝒌 + 𝒏𝟐)⟩  +

⟨𝒙(𝒌 + 𝒏𝟏)𝒙(𝒌 + 𝒏𝟐)⟩} + 𝟐⟨𝒙(𝒌)⟩𝟑                     (10)                    

Where 〈·〉 denotes the expected process.  

The rth degree moment of x(k) is defined as  

𝒎𝒓𝒙(𝒏𝟏, 𝒏𝟐, … . , 𝒏𝒓−𝟏) = ⟨𝒙(𝒌)𝒙(𝒌 + 𝒏𝟏) ⋯ 𝒙(𝒌 + 𝒏𝒓−𝟏)⟩                          (11) 

https://en.wikipedia.org/wiki/Frequency_distribution
file:///C:/Users/client/Desktop/divers/divers/encadrement/chap%201et%202/Analysis%20of%20EMG%20Signals%20in%20Aggressive%20and%20Normal%20Activities%20by%20Using%20Higher-Order%20Spectra.htm%23B14
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Thus, (10) can be rewritten as:  

𝑪𝟑𝒙(𝒏𝟏, 𝒏𝟐) = 𝒎𝟑𝒙(𝒏𝟏, 𝒏𝟐) − (𝒎𝒙(𝒎𝟐𝒙(𝒏𝟏) + 𝒎𝟐𝒙(𝒏𝟐) + 𝒎𝟐𝒙(𝒏𝟐 − 𝒏𝟏)) −

𝟐𝒎𝟑𝒙)         (12)          

                             

Alternatively, the 3rd-order cumulant can be written as  

𝑪𝟑𝒙(𝒏𝟏, 𝒏𝟐) = 𝒎𝟑𝒙(𝒏𝟏, 𝒏𝟐) − 𝒎𝟑𝒙
𝑮 (𝒏𝟏, 𝒏𝟐)           (13)                                                                                    

where𝑚3𝑥(𝑛1, 𝑛2) is the 3rd-order moment function of x(k) and 

𝑚3𝑥
𝐺 (𝑛1, 𝑛2)is the 3rd-order moment function of a Gaussian random 

process with the same 1st- and 2nd-order characteristics of x(k) 

𝒎𝟑𝒙
𝑮 (𝒏𝟏, 𝒏𝟐) =  𝒎𝒙(𝒎𝟐𝒙(𝒏𝟏) + 𝒎𝟐𝒙(𝒏𝟐) + 𝒎𝟐𝒙(𝒏𝟐 − 𝒏𝟏)) − 𝟐𝒎𝟑𝒙    (14)                                      

The Fourier transform of the 3rd-order cumulant is bispectrum and 

defined as  

𝐁(𝒘𝟏, 𝒘𝟐) = ∑ =+∞
𝐧𝟏=−∞ ∑ =+∞

𝐧𝟐=−∞ 𝑪𝟑𝒙(𝒏𝟏, 𝒏𝟐)𝑾𝒆−𝒋(𝒘𝟏𝒏𝟏+𝒘𝟐𝒏𝟐),   (15)                                              

|𝒘𝟏|, |𝒘𝟐| ≤ 𝝅 

whereW(n1, n2) is the 2-dimensional window function that decreases the 

variance of the bispectrum. In this study, a Hanning window was used. 

Equation (15) can also be defined in the Fourier transform of x(k) as  

𝐁(𝒘𝟏, 𝒘𝟐) = ⟨𝑿(𝒘𝟏)𝑿(𝒘𝟐)𝑿∗(𝒘𝟏 + 𝒘𝟐)⟩     (16)                                                                                 

where * denotes a complex conjugate.  

B(ω1, ω2) is a symmetric function, such that a triangular region 0 ≤ ω2 ≤ 

ω1, ω1 + ω2 ≤ π could completely describe the whole bispectrum. The 

other regions in the bispectrum are the symmetry of the defined 

triangular region. 

III. Results and discussion 

Analyzing nonlinear time series through recurrence quantification 

analysis has been investigated for many years [20] [21]. RQA has been 

proven to be effective in analyzing nonstationary signals. Not 

unexpectedly, RQA has demonstrated advantages over linear techniques 

in the analysis of EMG [22]. To test whether electromyogram is a 

nonlinear signal or just random noise, we analyze EMG signals of 

neuromuscular diseases using recurrence plot [see Figure. 4].  

The recurrence plots, shown in Figure.4, describe the natural, but subtle, 

time correlation within the EMG signals. The recurrence plots are almost 

symmetric with respect to the diagonal i=j.  

The recurrence plots for normal case and Myopathy case are quite distinct 

compared to Neuropathy case.  This is because a recurrence plot picks up 

similarities in the EMG signals, therefore, the recurrence plot reflects the 

degree of similarity present in the EMG signal. 

From all the results, we conclude that EMG obeys a certain nonlinear 

deterministic law and non-stationarity is significant within these signals. 

It is therefore possible to study and analyze these signals as a non-linear 

system using recurrence quantification analysis. This result confirms what 

is found by Sivarit Sultornsanee, Ibrahim Zeid and Sagar Kamarthi [23] 

 

 

(a) 
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(b) 

 

(c ) 

Figure 4:  Recurrence plots of Electromyography signals: (a) a normal case (b): a myopathy case (c): a neuropathy case. 

 

To distinguish the difference between the EMGs signals and hence to 

estimate the evolution of their disease severity, histograms of the variation 

of the same parameters mentioned previously given in the table below 

[Table. II] (Recurrence rate (RR), Determinism (DET%) and Complexity 

feature (CPF)) will be plotted. Thus, a comparison of these cases will be 

performed. [Figure.5] 

The histogram of the Recurrence rate (RR) variation represented by 

[Figure.5. (a)], shown an inversely relative proportionality between the 

value of the Recurrence rate (RR) and the type of the signal. The first 

recording (the normal case) represents a higher value (≈181), that the 

other case. The second with a myopathy, also has an important value, 

closer to the normal case (165.5) and more important than the neuropathy 

case (≈47.7).  This variation shows that the myopathy case has properties 

similar to the normal case that neuropathy case. 

The DET feature is the measure of determinism and periodicity in time 

series. The lower DET is an indication of higher randomness and lower 

predictability.[24]  

For the same cases studied, the result of the variation in DET shown in 

Figure.5. (b), makes clear the differences that may exist between these 

signals.  For the normal case, the EMG signal is highly random and 

nonstationary in nature. This may be due to higher firing rates of motor 

units and increased recruitment of motor units for force generation. 

However, for the pathological cases, the DET value appeared to be 

increase steadily to higher values. 
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Here, the DET value of myopathy, are much closer to the normal case as 

the neuropathy. These results, so well confirm what was found by the 

recurrence rate (RR) and consequently the myopathy is less severe than 

the neuropathy. These findings are confirmed by those given in [23]. 

Complexity feature variations of three different cases studied represented 

by [Figure.5. (c)], shows that the first recording (the normal case) is the 

least case. It represents 16% of the value of myopathy and about 5% of 

the neuropathy case. Higher complexity means that the signal is random 

and highly non stationary. Lower values of complexity are an indication 

of repetitive regular structures and hence considered to be predictable. 

[24]. In this context the CPX variation, present an important parameter to 

complete differentiation and classification pathological severity between 

EMGs signals: Neuropathy is the most severe cases. 

 

Figure 5: histograms of the variation of the non-linear parameters 

Signal RR DET (%) CPX 

Normal 166.4477    99.68 0.02 

Myopathy 165.5 98.52 0.13 

Neuropathy 47.6976    95.8296   0.37 

 

Table II: Nonlinear parameters analysis of the EMGs signal 

 

The frequency representation by applying the bispectrum analysis 

[Figure.6 , Figure.8 and Figure.10  ]and  the estimating study of the 

frequency and amplitude variation given by the diagonal slice : 

Amp=f(Freq) of the three cases of EMGs signals [ Figure.7 , Figure.9 

and  Figure.11]: normal, myopathy and neuropathy, shows that 

important frequencies to maintain the muscle signal range from 20 to 500 

Hz.  

For the first case, the resulting bispectrum [Figure.6. (b)], shows a well 

contoured representation with maximum amplitude for a frequency of  

 

 

20Hz. Thus, the most important energy is conserved in the range 20 to 

120 Hz. The diagonal slice of a portion of the bispectral representation 

proves what was represented before and shows that the maximum 

amplitude is 0.41 mV for a frequency of 20Hz, from amplitude 0.08 mV 

and frequency 50Hz the information begins to decrease until 95 Hz, 

beyond that the information begins to disappear. [Figure.7] 

The second case with a electromyopathy signal, the resulting bispectrum 

analysis shows a primary deformation of the contour, as well as a dilation 

towards high frequencies with maximum amplitude for a frequency of 32 

Hz. Thus, the most important energy is conserved in the range 20 to 200 

Hz. [Figure.8. (b)] 
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Figure 6: (a): Temporal representation of a normal case, (b) and (c): bispectral representation (contour in (a), surface in (b)) 

 

 

 

 

Figure 7:  The diagonal slice of a portion of the bispectral representation of a normal case. 
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Figure 8: (a): Temporal representation of a Myopathy case, (b) and (c): bispectral representation (contour in (a) and  surface in (b)) 

 

The diagonal slice of a portion of the bispectral representation shows also 

that the maximum amplitude is 0.16 mV for a frequency of 32Hz, from 

amplitude 0.01 mV and frequency 88Hz the information begins to 

decrease to 216 Hz, beyond that the information begins to disappear. 

[Figure.9] 

The third case for a neuropathic type, the application of the bispectrum 

analysis and the diagonal slice of a portion of the bispectral 

representation, proves again that the most suitable frequency range to 

analyze EMG signals is 20 to 500 Hz. In this pathological type, the signal 

bispectrum is a contour very distorted and dilated towards the high 

frequencies with maximum amplitude for the frequency of 60 Hz. Thus, 

energy is conserved in the range 20 to 480 Hz. [Figure.10. (b)]  

The diagonal slice of a portion of the bispectral representation shows that 

the maximum amplitude is 9.9 mV for a frequency of 60Hz, from 

amplitude 0.84 mV and frequency 270Hz the information starts to 

decrease until 400 Hz at 500 Hz, beyond the information begins to 

disappear. [Figure.11] 

The time domain representation (higher-order cumulants) [Figure.12] of 

the three cases of EMGs signals: normal, myopathy and neuropathy, 

shows that: for the first case, the resulting cumulant shows a well 

contoured representation with maximum information is located in the 

center. Thus, the most important energy is conserved in the very short 

range (few ms.). [Figure.12. (a)]. The second case with a 

electromyopathy signal, the resulting cumulant representation shows a 

primary deformation of the contour, with a large dilation, with a 

maximum amplitude going up to 5*10-4 mv. Thus, the most important 

energy is conserved around to 5*10-3 ms. [Figure.12. (b)]. The third case 

for a neuropathic type, the application of the cumulant analysis show a 

contour very distorted and dilated towards 0.05 ms. with maximum 

amplitude 0.1mv. [Figure.12. (c)] 
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Figure 9: The diagonal slice of a portion of the bispectral representation of a Myopathy case. 
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Figure 10: (a): Temporal representation of a Neuropathy case, (b) and (c): bispectral representation (contour in (a) and surface in (b) 
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Figure 11: The diagonal slice of a portion of the bispectral representation of a Neuropathy case. 
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Figure 12: Cumulant plots (contour   and surface) for: (a) Normal case, (b): Myopathy case and Neuropathy case in (c). 

 

IV. Conclusion: 

Electromyography plays an important role in clinical neurological 

diagnosis; it can confirm or dismiss clinical diagnoses, indicate the 

location and type of an abnormality or expose disorders that are clinically 

uncertain.  

Several methods based on modern signal Processing techniques, have 

been investigated. 

The non lineaire analysis of the EMG signal based on the recurrence 

quantification analysis (RQA) and bispectrum representation, was shown 

to be particularly promising for the detection of muscle status changes.  It 

appears that RQA and bispectrum methods may be a useful technique in 

differentiating pathological cases from normal cases. The results obtained 

from this analysis are acceptably high enough. This simple and effective 

method may help experts in defining pathological cases and this can give 

important clues about some abnormalities related to EMG signals. 
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