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Abstract 

Cochliobolus is a Dematiaceous fungi that belong to family: Pleosporaceae. It is known as worldwide pathogen of 

mostly grasses that caused devastating disease epidemics of important economic food crops as wheat, rice, and maize. 

Many Cochliobolus species have their asexual states, and consequently synonyms, in either Bipolaris or Curvularia. 

In this review, highlights were presented on Cochliobolus species as models of fungi rich in therapeutic agents that 

can be employed in different applications. Moreover, describing the importance and potentials of this fungus in order 

to encourage for further studies to search, isolate, and purify already known metabolites. Also, screen for, and discover 

novel metabolites produced by those potent fungi in order to be involved in additional applications.  
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Introduction 

Natural products represent the significant and important source for 

discovery of potential novel drugs. The search for novel secondary 

metabolites is currently focusing on endophytic microorganisms isolated 

from plants, remote locations, and novel sources. Numerous reports 

shows that endophytes produce a wide variety of chemical substances, 

many of which show biological activity [1-3].  

There are various uses of the numerous promising secondary metabolites 

produced by fungal endophytes. The application of microbial secondary 

metabolites in various fields of biotechnology has attracted the interests 

of many researchers. Bioactive compounds have various applications in 

pharmacology and agriculture [4]. Cochliobolus species are heterothallic 

fungi that found mainly in soil and organic compost and they are noted 

for the production of secondary metabolites with vital biological activities 

[5-8]. 

The microorganisms such as Cochliobolus may be very interesting for 

biotechnological production of bioactive substances as medicinally 

important agents. The endophytic fungus Cochliobolus sp. this fungus 

possess significant antioxidant, antidiabetic and anti-inflammatory 

potentials [9-11].  

The previous studies reported that Cochliobolus sp. produce many 

important secondary metabolites cluding curvularides, anthraquinones, 

cochlioquinones, helminthosporal, helminthosporol, prehelminthosporol 

as well as various related metabolites. These compounds exhibit many 

pharmacological importances, due to their antioxidant, antimicrobial as 

well as antifungal properties. Hence, screening and identification of 

fungal endophytes s very important as a source for novel natural products. 

Fascinatingly, it seems that the host–endophytic interaction plays a 

crucial role in the direction of the endophytes secondary metabolites 

production [12, 13]. 

Cochliobolus description and ecology 

Endophytes are microorganisms located in internal layers of living plants 

without being harmful to the plant. There are many remarkable 

pharmacological agents that are continuously explored and identified 

from endophytic fungi [14]. It should be mentioned that over 50% of 

identified bioactive compounds have been isolated from fungal 

endophytes [15]. Endophytic fungi are the source of many pharmaceutical 

compounds including those exerting antibacterial, antifungal, anticancer, 

antitumor, antiviral, and anti-inflammatory activities [16, 17]. 

Genus Cochliobolus is a fast growing fungus attaining 5.5 cm diameter 

after 5 days on Czapek’s Agar and Malt Agar. Genus Cochliobolus belong 

to Phylum Ascomycota; Class: Dothideomycetes; Order: Pleosporales; 

Family: Pleosporaceae. The genus Cochliobolus (as well as its 

anamorphic sp. that almost include nearly 55 species (Bipolaris, 

Curvularia) are found worldwide. These species   are weeds pathogens 

and since the weeds and pathogens are coevolved over long term, these 

species can be applied as weed herbicides [18]. The taxonomy of 

Cochliobolusis is a little bit confusing due to the frequent changes in 

nomenclatural that have occurred in the sexual and asexual states of 

species over the past decades. Cochliobolus ascomata are dark brown to 

black, unilocular with a globose body and a long or short cylindrical 

ostiolate neck. Hyaline to brown sterile hyphae and conidiophores often 
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occur on the ascomata and less so on the neck [19]. Asci are bitunicate, 

2-8-spored, cylindrical toobclavate or obclavate cylindrical .Ascospores 

are filiform and more or less coiled in a helix in the ascus (Figure 1, 2). 

Most species of Cochliobolus form protothecia (sclerotia) which are 

sterile without any ascogenoushyphae [20-22]. It is a saprophyte and 

survives primarily as thick-walled conidia. It can also survive as 

mycelium in soil or crop debris.  The sexual stage is not important in the 

disease cycle.  Primary inoculum includes mycelium from infected seed, 

conidia in the soil, and conidia on the kernel surface [23]. Cochliobolus 

species encountered based on conidia different shapes. Conidia straight, 

conidia curved, conidia wall smooth, conidia curved with 3-distoseptate, 

conidia wall with tuberculate, conidia with 5-distoseptate and conidia 

with 6-10-distoseptate. 

Germination of conidia takes place in presence of susceptible hosts and 

initiate primary infection on the coleoptile, or primary roots. Before 

penetration, appressoria and dome-shaped infection cushions are formed. 

Infection pegs form underneath infection cushions and appressoria. 

Tissue disintegration come as the final step after development of infection 

from epidermis to cortex then endodermis. Spreading of conidia is 

causing the progress in colonization of infected plant parts [24]. 

 

Figure 1. Cochliobolus Sp. On Potato Dextrose Agar (cited in: www.ipmimages.org) 

 

Figure 2. Cochliobolus sp. with different shapes and septate conidia. On Potato Dextrose Agar (cited in: www.sen.wikipedia.org and 

www.forestryimages.org). 

Cochliobolusis secondary metabolites 

Species of Cochliobolus Drechsler [25] and its anamorphs Bipolaris [20] 

as well as Curvularia [26, 27] are worldwide pathogens of most grasses. 

There are a lot of secondary metabolites produced by strains of 

Cochliobolus and its anamorph.  Cochliobolus carbonum produced 

TOXEp Novel as protein Regulation of cyclic peptide biosynthesis [28], 

EXG1p novel exo-β1,3-glucanase Cell wall degradation. Cochliobolus 

spicifer which produced spiciferone as AGamma-pyrone as plant growth 

inhibitor [29] and 6-Chlorodehydrocurvularin [30]. Cochliobolus 

miyabeanus produced Cochlioquinones A, B compound as new 

metabolites with p-quinonoid nature [31]. Cochliobolus sativus which 

produced 9-Hydroxyprehelminthosporol compound which as Anti-viral 

property [32]. Cochliobolus sp. produced Isocochlioquinone and 

Cochlioquinone A which as ALeishmanicidal activity [33].  

Mycotoxin production by Cochliobolus (Bipolaris species) may or may 

not be host-specific [19]. HS toxin (a peptide and a secondary amine) 

produced by Cochliobolus victoriae, HC toxin (a polypeptide) produced 

by Cochliobolus carbornumrace 1, and T toxin produced by Cochliobolus 

hetero-strophusare examples of host-specific toxins. Ophiobolins 

(terpinoid) produced by Cochliobolus miyabeanus and carbotoxin 

produced by Cochliobolus carbornumare examples of non-host-specific 

toxins [19]. Other mycotoxin are Bipolaroxin, Sorokinianin, Carbotoxine, 

Victorin and Ophiobolin which produced by Cochliobolus.  

http://www.ipmimages.org/
http://www.sen.wikipedia.org/
http://www.forestryimages.org/
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The filamentous fungi Cochliobolus sorokiniana efficiently produces the 

biotransformation of α-bisabolol (Figure, 3) to bisabolol-oxide B. α-

Bisabolol is economically significant due to its delicate characteristic 

floral odor and its anti-inflammatory and antiseptic biological activities. 

Therefore, it is being widely employed in the pharmaceutical industry. 

Potent antifouling activity is observed in some newly isolated resorcylic 

acid lactones found in the fungus Cochliobolus lunatus derived from the 

gorgonian Dichotella gemmacea. Thus obtained were cochliomycins A–

C (Figure, 4).  Only cochliomycin A shows potent activity against 

Balanus amphitrite. 

Some biological activities of Cochliobolus 

metabolites  

Apart from being a worldwide pathogens of mostly grasses (Poaceae) and 

important food crops such as rice, wheat and maize [26], Cochliobolus 

exhibit different activities that can be useful for plants.  

For example, Cochliobolus can be used as a biochemical modulator to 

alleviate 

salinity stress in okra plants [34, 35]. Chloromonilinic acids C and D 

extracted from Cochliobolus australiensis  showed toxic effect to 

buffelgrass in a seedling elongation bioassay, with significantly delayed 

germination and dramatically reduced radicle growth, especially at a 

concentration of 5 × 10–3 M [36]. 

 

Figure 3. Some important structures compounds produced by Cochliobolus sorokiniana. 
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Figure 4. Some important structures compounds produced by Cochliobolus lunatus. 

On the other hand, Cochliobolus species have well known potency in the 

field of microbial biotransformation of compounds generally, and 

steroidal compounds in particular [37, 38]. 

Furthermore, Cochliobolus species have shown promising various 

biological activities. Metabolites originated from Cochliobolus exerted 

antileishmanial activities against Leishmania and Trypanosoma. It was 

reported that the crude extract of Cochliobolus sp. (UFMGCB-555) at 20 

µg/m concentration could kill 90% of the amastigote-like forms 

of Leishmania amazonensis and inhibit by 100% Ellman's reagent 

reduction in the trypanothione reductase (TryR) assay, which 

demonstrated that the chromatographic fractionation of that 

Cochliobolus sp. extract was a promising drug target for Trypanosoma 

cruzi. The metabolites, Cochlioquinone A and Isocochlioquinone A were 

identified as the enzyme inhibitors responsible for the antileishmanial 

activities [33], [39, 40]. Cochliobolus metabolites showed also promising 

anticancer activities. Radicinin isolated from Cochliobolus geniculatus 

WR12 exhibited high cytotoxic activity against T47D cells recording IC50 

of 25.01 ppm [41]. The same compound showed also anti- MRSA activity 

with minimum inhibitory concentration (MIC) of 125 µg/disc against 

tested MRSA [42]. Dendryphiellin I isolated from the marine derived 

Cochliobolus lunatus SCSIO41401 showed cytotoxic activity against 

three renal cancer cell lines (ACHN, 786-O, and OS-RC-2), a human liver 

cancer cell line (HepG-2), and a human gastric cancer cell line (SGC7901) 

(IC50 1.4 to 5.9 and antibacterial activities against three bacterial species 

(MIC 1.5 to 13 μg/mL). Another metabolite, (dendryphiellin J), was 

extracted from the same fungus and showed cytotoxicity against ACHN 

and HepG-2 cells with IC50 values of 3.1 and 5.9 μM, respectively [42].  

Cochliobolus in biological control 

Cochliobolus species and its asexual states have been isolated as saprobes 

from different dead wood plants. Also Cochliobolus can be found in 

association with many species of Poaceae such as bamboo and also other 

host plants. For example, Curvularia lunata is a frequently recorded 

saprobe of bamboo clumps [43-45]. 

Using fungi as biological control agents is a rapidly growing area of 

research with implication for plant productivity, animal and human 

health, and food production [46]. Weeds are an economic restraint to 

agricultural production [47]. Biological control of weeds by using plant 

pathogens has gained acceptance as a practical, safe, environmentally 

beneficial weed management method applicable to agroecosystems. The 

use of mycoherbicides is important in the move towards organic farming 

and the reduction in the use of chemical herbicides. 

Many Cochliobolus and its anamorphic species (Bipolaris and 

Curvularia) are pathogens of weeds and can successfully be applied as 

weed herbicides. Some examples of research that shows Bipolaris and 

Curvularia can be used as potential mycoherbicides. The pathogens may 

have evolved biochemical mechanisms to kill the weed host [18]. 

Bipolaris sp. were tested as a potential herbicide agent against serrated 

tussock in Australia [48]. The biological control of weeds has generally 

been limited by the slow development of effective, broader spectrum 

biological control agents [49, 50], and more effective biocontrol agents 

need to be developed.  

Curvularides, cochlioquinones, anthroquinones and some novel proteins 

involved in cyclic peptide regulation and cell wall degradation have been 

reported from Cochliobolus strains. These compounds may have 

important medicinal values, such as anti-fungal properties, and thus have 

the potential to be used in medical science [12]. 
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Conclusion 

Fungi are promising sources for such compounds due to their ability to 

produce variety of secondary metabolites that could be, if truly 

investigated, the solution for currently serious problems. Every study 

conducted on Cochliobolus resulted in discovery of new metabolites or 

pointing to a possible application, which made Cochliobolus species 

potential source of pharmaceuticals and attracted attention for further 

investigations of their medical properties.  
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