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Abstract 

Cancer stem-like cells (CSCs) are a subset of cancer cells that are resistant to conventional radiotherapy and chemotherapy. As such, 

CSCs have been recognized as playing a large role in tumor initiation and recurrence. Although hyperthermia is broadly used in cancer 

treatment either alone or in combination with radio- or chemo-therapy, its potential to target CSCs is not well understood. In this 

review, we discuss different types of hyperthermia and potential mechanisms of action in cancer treatment, particularly in regards to 

killing CSCs. 
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Introduction 

Despite advances in understanding the molecular changes 

underpinning cancer and improved technology and treatments, cancer 

remains a leading cause of death in America. The cancer stem-like cell 

(CSC) hypothesis posits that a subset of tumor cells have a high 

capacity for self-renewal, have the ability to differentiate into multiple 

lineages and can give rise to tumors [1-4]. These CSCs are highly 

malignant and can persist or proliferate in spite of cytotoxic treatment 

[1-4]. Therefore, these CSCs play a large role in tumor progression. 

Development of new treatment modalities that are able to target and 

kill CSCs may provide more durable cancer control [1-4]. 

Hyperthermia is a potent radiosensitizer that has been shown in 

numerous clinical trials to improve tumor control. Importantly, the 

efficacy of hyperthermia is seen across many cancer types, including 

breast cancer, prostate cancer, melanoma, sarcoma, rectal cancer, 

bladder cancer, esophageal cancer, cervical cancer and glioblastoma 

suggesting that it has broad clinical applicability [5–24]. Recently, 

combined hyperthermia and radiation has also been shown to improve 

pain palliation in patients with bone metastases compared to radiation 

alone [25]. Therefore, hyperthermia has widespread usage for patients 

with both locoregional disease and advanced cancers and can be used 

for patients with a variety of cancer types. The value of hyperthermia 

as a treatment has in fact been observed for centuries. Hippocrates, the 

father of modern medicine, is known to have said, “Those who cannot 

be cured by medicine can be cured by surgery. Those who cannot be 

cured by surgery can be cured by heat. Those who cannot be cured by 

heat, they are indeed incurable”. Over the years, medicine and surgery 

have seen significant advances, and hyperthermia fell by the wayside. 

However, in modern times, hyperthermia is making a resurgence due 

to improved technology in delivering hyperthermia and in non-

invasive thermometry techniques. 

Hyperthermia is classified into two broad categories based on the 

target heating temperature. Thermal ablation refers to treatments with 

target temperatures above 50°C and mild temperature hyperthermia 

refers to treatments with temperatures between 39 and 43°C [26]. 

While thermal ablation largely kills tumor cells due to the direct 

cytotoxic effects of heat, mild temperature hyperthermia uses heat as 

an adjunct treatment to enhance the cytotoxic effects of radiation and 

chemotherapy [26–28]. The biologic effects of thermal therapy are 

dependent on time and temperature.  

 

 

The mechanisms underlying the biologic effects are multi-factorial and 

impact the tumor population itself, the tumor microenvironment and 

immune system. 

Methods for Administering Hyperthermia 

Radio-frequency hyperthermia is the most widely used hyperthermia 

technique worldwide and is typically used for ablative heating [28–30]. To 

achieve heating, radio-frequency electrodes are passed into the tumor 

tissue under image guidance. A high-frequency alternating current is then 

passed through the electrodes to cause the rapid oscillation of ions in 

nearby cells, resulting in frictional heating [27,31]. The range of heating is 

limited to the millimeter range because it relies on heated tissue to conduct 

current to surrounding areas [32]. The short range of heating also limits 

the ability to heat tumors near blood vessels because the heat is dissipated 

too quickly [32,33]. 

Microwave hyperthermia is an alternate method of delivery that can 

overcome some of the limitations of radio-frequency hyperthermia. 

Microwave heating uses waves of higher frequency to kill cells. Unlike 

radio-frequency thermal therapy, microwave hyperthermia does not pass 

an electrical current through tissue, but rather creates an oscillating 

electromagnetic field that forces ions and dipoles to align with the field, 

causing them to rotate as the field oscillates [31,32,34]. This rotation 

causes friction that heats the tissue. Microwave hyperthermia presents 

several advantages compared to radio-frequency hyperthermia. While 

radio-frequency hyperthermia relies on ions inside tissue to conduct 

current, microwave hyperthermia creates an electric field, the effective 

range of which is larger without risking damage to tissue closer to the 

antenna or probe [32]. Microwave hyperthermia has a much higher 

effective range of up to 3 cm [32].  

Laser interstitial thermal therapy (LITT) is a relatively new method of 

administering hyperthermia that uses a stereotactically placed laser probe 

to heat surrounding tissue with a low power (10–15 Watts) infrared laser 

(at Nd-YAG range) [35,36]. Heat essentially is produced after absorption 

of laser in the tissue and transferred up to 1.5–2 cm from the laser probe 

by conduction. To control the extent of thermal ablation, a specific 

sequence of MRI (MR-thermometry) is used to measure relative changes 

of temperature within the magnetic field. For deep seated lesions, 

including brain tumors, LITT is used in conjunction with MR-

thermometry to give accurate thermal ablation of the target lesion [35,36].  
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The minimally invasive nature of LITT under MR-thermometry 

guidance has permitted the expansion of hyperthermia to deep and 

difficult to access tumors including intracranial and retroperitoneal 

tumors [35,36]. 

High intensity focused ultrasound (HIFU) (also called focused 

ultrasound surgery (FUS)) utilizes an ultrasound beam with very high 

energy to increase the temperature rapidly in the target tissues [37–

39]. A single HIFU exposure usually treats a very small volume along 

the ultrasound axis. Multiple exposures can be used side by side to 

achieve coverage of a large volume of tumor [37–39]. One advantage 

of HIFU is that it creates a steep temperature gradient in a small 

focused area and effectively creates a sharp boundary of damage in the 
target tissue while sparing adjacent normal tissues [37–39]. 

Nanoparticles can also be used to augment heating within a tissue 

when exposed to electromagnetic energy [40–42]. These particles 

include magnetic nanoparticles (such as iron oxide), gold-silica 

nanoshells, solid gold nanoparticles and carbon nanotubes [40,41]. 

The outer shell of nanoparticles can be modified molecularly to 

facilitate their dissemination and uptake by specific cell types, 

including tumor cells [42]. Additionally, nanoparticles may be loaded 

with cargo including cytotoxic drugs or oncolytic viruses that can be 

released upon disruption by a heat source [43]. Nanoparticles can be 

administered systemically to exploit the leaky vasculature of primary 

tumors to enhance intra-tumoral delivery [44]. However, nanoparticles 

often display a patchy, near-perivascular deposition within the well-

vascularized regions of tumors [45]. Some blood vessels such as those 

associated with brain tumors are not as leaky as blood vessels found in 

other solid tumors. While the blood-brain barrier is partially breached 

in regions with glioma cells, the „compromised‟ blood-brain barrier 

still presents a major challenge, especially in hypoxic and avascular 

region of glioma dispersion [46]. Since high spatial concentrations of 

nanoparticles are required for hyperthermia, direct intratumoral 

delivery of 12 nm magnetic nanoparticles has been used in clinical 

trials for hyperthermia treatment of prostate tumors and recurrent 

glioblastoma [47,48]. When subjected to an external alternating 

magnetic field, the nanoparticles vibrate and heat up to kill 

surrounding cells. Because non-ionizing electromagnetic radiation can 

be applied remotely to heat the nanoparticles, this technology is 

considered noninvasive but requires good visualization of the target 

tumor [42,49]. A typical drawback of the application of iron oxide 

nanoparticles is associated with the indefinite exclusion of MRI for 

subsequent monitoring of tumor progression after initial injection of 

nanoparticles and the residual MR signals that interfere with follow-up 

MR imaging. 

Hyperthermia in Cancer Therapy 

When hyperthermia is applied to a tumor, three different reaction 

zones can be distinguished based on the temperature and duration of 

heating: a central zone that is directly and immediately beyond the 

application site, a peripheral zone that is around the central zone and is 

heated to a lower temperature, and an outer region which is not 

directly affected by the heat [28,42,50]. Hyperthermia causes cellular 

injury directly and indirectly in these different zones via different 

mechanisms, although some overlap may exist. The extent and type of 

cellular damage varies as a function of temperature and time. A high 

temperature for a short period of time can achieve similar levels of cell 

kill as lower temperature heating for a longer period of time. 

Direct Effects to Tumor Cells: Hyperthermia causes membrane 

dysfunction to contribute to cell death. Rising temperature affects the 

stability, fluidity and permeability of cellular membranes, including 

the plasma membrane, mitochondrial membranes, and other cytosolic 

membranes [50,51]. These membrane changes can compromise the 

function of transmembrane transport proteins, ion channels, cell 

surface receptors and other membrane-associated proteins and disrupt 

lipid rafts or signal transduction hubs [50,51]. However, the degree of 

membrane dysfunction strongly influences cell fate. For example, 

some changes in membrane potential, intracellular sodium and 

calcium content do not correlate well with the rate of cell death [52–

54].  

 

 

On the other hand, mitochondrial dysfunction induced by hyperthermia 

can lead to cell death [50,55]. 

Another direct effect of heat is the denaturation of proteins, especially 

under high temperatures. Denaturation and inactivation of these proteins 

can impact a broad range of cellular processes including cellular 

metabolism, protein synthesis, nucleic acid synthesis and DNA/RNA 

polymerization [50,56]. After mild hyperthermia, some cellular functions 

can recover. Proteins may refold, and RNA and protein synthesis may 

recover. However, DNA replication and repair typically remain repressed 

[57]. This is thought to be due to the aggregation of denatured proteins in 

the nuclear matrix and irreversible changes to chromatin structure that 

impair DNA synthesis and repair [57]. Hyperthermia can inhibit the 

function of DNA-polymerases-a and –b and can also facilitate degradation 

of the DNA repair protein BRCA2 to inhibit homologous recombination 

[57,58]. Hyperthermia itself is believed not to cause severe DNA damage, 

but rather indirectly contributes to DNA damage by reducing the 

efficiency of the DNA damage repair machinery [59]. 

Hyperthermia can induce cell death by necrosis and apoptosis. The cells in 

central application zones, which are confronted with high temperatures, 

usually die by necrosis. However, some subpopulations of cells may 

escape immediate hyperthermic killing. These resistant cells in the central 

zone and the cells in the peripheral zone, which receive lower temperature 

hyperthermia, may die within hours of heat cessation [50,51]. Mild 

temperature hyperthermia can induce apoptosis through both the intrinsic 

and extrinsic pathways. Hyperthermia can activate Caspase-2 which then 

binds to the adaptor protein RAIDD to cleave and activate Bim, which 

promotes mitochondria-dependent apoptosis [60]. Hyperthermia can also 

activate Bim to induce Caspase-2 independent apoptosis. In addition, 

hyperthermia can activate Fas, tumor necrosis factor a (TNF-a ) and tumor 

necrosis factor-related apoptosis-inducing ligand (TRAIL) to trigger the 

extrinsic apoptotic pathway [61,62]. Additionally, heat treatment can 

increase the production of reactive oxygen species (ROS) by activation of 

xanthine oxidase and/or facilitating mitochondria respiration to produce 

O2−. Moreover, hyperthermia negatively affects SOD1 expression and the 

enzymatic activities of SOD1 and SOD2, whereas it is able to activate 

NADPH oxidase [63–65]. This increase in ROS can facilitate apoptosis 

[66,67]. 

Alterations to the Tumor Microenvironment 

Hyperthermia can also modify the tumor microenvironment to modulate 

tumor growth and recurrence. Hyperthermia is well known to increase 

perfusion within tissue and compromise the integrity of blood vessels 

[33,68-70]. Hyperthermia can damage endothelial cells, alter the 

adhesiveness of the vessel wall, and increase the leakiness of blood vessels 

and viscosity of blood [68]. These changes in perfusion can influence local 

pH, oxygen and nutrient supply in the tumor, rendering them more 

stressed and more susceptible to cytotoxic therapy [71]. Hyperthermia can 

also improve tumor oxygenation, making cells more susceptible to 

radiation, and may improve the penetration of chemotherapy into the 

tumors [69,72]. 

The Effects of Hyperthermia on Cancer Stem-Like Cells 

Cancer stem-like cells (CSCs) are a rare population of cancer cells that can 

self-renew and differentiate into progeny with limited proliferative 

potential. CSCs sit at the apex of hierarchically organized tumors. CSCs 

have strong tumorigenic activity compared to non-stem cancer cells and 

can establish an entire tumor [1,3,56]. CSCs usually reside in specific 

niches that orchestrate their fate. Niche components that support the 

undifferentiated state of CSCs include communication with contacting 

cells such as other stromal cells and endothelial cells, extracellular matrix 

components, soluble factors including Wnt, TGFb and other cytokines, 

and physical states such as hypoxia and low pH [73,74]. 

Conclusion 

The use of hyperthermia to treat cancer has a long history. Hyperthermia 

has consistently improved the efficacy of radiotherapy and chemotherapy 

for many types of cancers. The CSC model sheds light on another 

potential therapeutic benefit of hyperthermia. 
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Strategies that combine hyperthermia with cytotoxic agents, metabolic 

stressors or immune therapies may improve CSC kill by targeting the 

cancer cells themselves and modulating their microenvironment. The 

method of administering heat may also influence cell kill. More work 

is needed to define the optimal modes of hyperthermia to kill CSCs 

safely and efficiently. The combination of hyperthermia and 

immunotherapy to target CSCs also holds great potential, and further 

studies are needed to understand how best to integrate hyperthermia 

with immuno-oncology. Heat therapy was recognized for its 

therapeutic effects by ancient physicians. It is once again emerging as 

an important treatment modality that fights cancer through multiple 
mechanisms. 
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