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Abstract 

     This review seeks to describe, from first principles, the nature of the interaction forces in atomic  and ionic liquids. The atoms and 

molecules made up of dipoles and multipoles interact with van der Waals forces, while the ionic systems are viewed as pseudoions 

interacting through effective forces depending on the electronic structure and the physical ionic arrangement. The interplay 
between these two aspects of materials is quite complex and forms the main subject of this review. 

     As it will be shown, the two-component system of interacting electrons and ions can be reduced, in second order perturbation 

theory, to an effective one-component system made up of pseudoions acting under the influence of two-body, central, screened 

potentials. These potentials result from a weak interaction between the electrons and the ions, deduced from the pseudopotential 

theory. 

      Once the interatomic forces are known, the atomic structure and the electronic transport properties can be determined by methods 

of classical mechanics and quantum mechanics. Besides, a large volume-dependent term in the free energy, independent of the 

ionic positions, which distinguishes the conducting liquids from the simple isolator liquids like argon, is indispensable for 
explaining the thermodynamically properties. 

 

1. Classification of Liquids 

A liquid is a phase of condensed matter in which the density is further 

removed from that of the gas phase than that of the corresponding solid 

phase. Because of this large difference of density between liquids and 

gases, the thermodynamic functions of liquids cannot be developed as 

a function of the density, as done for the gases. But, although the 

density of liquids is close to that of solids, at a similar temperature, the 

lack of translational symmetry and long-range order does not allow a 

theoretical description of liquids as easily as for solids. 

    Liquids have been classified for a long time according to their 

electronic or atomic transport properties. For example, the liquids (like 

solids) can be divided into insulators and conductors; for conductors, it 

must be still indicated whether the conduction is ionic (the conductivity 

of molten salts varies from 1 to 103 Ω−1.m−1) or electronic (the 

conductivity of liquid metals is of the order of 106 Ω−1.m−1). However, 

the liquids can also be classified according to their ability to flow more 

or less easily. While most of simple liquids have low dynamic 

viscosities (10−3 Pa.s), certain organic fluids may have viscosities much 

larger (1 Pa.s). 

     Among the possible classifications of liquids, the least controversial 

is the one made on the basis of the interactions acting between atoms 

or molecules, because a specific interaction dominates in each type of 

liquid. This review is solely devoted to the simple liquids that is to say 

to liquids characterized by interactions in spherical symmetry whose 

forces have the center of mass of the particles as the application point. 

For such systems, the potential energy U is written as a sum of N-body 

potentials: 

             UN(r1,...,rN) =        u2(ri,rj) +        u3(ri,rj,rk) +             u4(ri,rj,rk,rl) + ..., 

i<j                             i<j<k                                i<j<k<l 

    where u2(ri,rj) is the 2-body potential, u3(ri,rj,rk) the 3-body 

potential, etc. This notation clearly indicates that if three particles (i,j,k) 

are interacting, their potential energy consists of the sum of the 2-body 

potential [u2(ri,rj) + u2(rj,rk) + u2(rk,ri)] plus the 3-body potential 

u3(ri,rj,rk). 

    The most representative simple liquids are the noble gases: argon, 

krypton, xenon as classic liquids, as well as neon and helium, which 

are considered as quantum liquids when the de Broglie wavelength of 

the atoms is of the same order of magnitude as the interatomic distance. 

At low densities, the methane (CH4) can also be regarded as a simple 

liquid because it consists of nearly spherical molecules. 

     In the category of simple liquids, enter also, without restriction, the 

liquid metals such as alkali metals (Na, K, Cs ...), noble metals (Ag, 

Au, Cu) and most of polyvalent metals. Germanium and silicon can 

also be seen as such, although they have a pronounced tendency to form 

covalent bonds. Unlike the noble gas atoms, the metal atoms have 

incomplete electron shells occupied by the valence electrons forming a 

gas of nearly free electrons. Thus, it may seem strange that a metal, 

composed of ions immersed in an electron gas, can be regarded as a 

simple liquid. In fact, this is legitimate to the extent that the metal can 

be thought of as a set of pseudoions interacting with a pseudopotential, 

the concept of which was developed by Phillips and Kleinman[1]. 

Although the concept of pseudopotential is more difficult to justify for 

the transition metals and rare earth metals than for the normal metals 

(alkali and polyvalent) - due to the hybridization effects between the 

valence electrons and core electrons - the fact remains that, from a 

structural point of view, all the liquid metals are considered as simple 

liquids. It should be mentioned that the pseudopotential formalism is a 

powerful tool used to define the pair potential in liquid metals, which 

depends on the density and temperature, unlike the pair potential of the 

rare gases. 
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    Binary alloys and liquids having important directional effects will 

not be investigated here. Examples of these liquids are the 

homonuclear (N2, O2 , H2) and heteronuclear (CO) molecular liquids, 

the associated liquids (water, glycerol ...) characterized by hydrogen 

bonds and the polar liquids (HBr, SO2...) whose molecules have a 

strong asymmetry or pronounced electrostatic interactions. 

 

    Another class of simple liquids, with a structural length scale 

between 10 nanometers and one micron (1000 nm), will not be 

investigated either. These systems are composed of mesoscopic 

particles 1000 times larger than atoms, immersed in an aqueous 

solution. They include the colloidal suspensions, spherical polymers, 

biological macromolecules, etc. Although they are more sensitive to 

mechanical stresses than the atomic systems, their thermodynamic and 

structural properties can be calculated with the same theoretical models 

as those of the atomic systems. Their interparticle potentials will be 

examined in another paper. 

 

2. Typology of Microscopic Interactions 

   2.1 Interactions at Short and Long Distances 

    The low compressibility and the relatively high density of liquids 

show respectively the existence of repulsive forces at short distances 

and attractive forces at long distances. The repulsive forces prevent the 

collapse of the matter on itself and the attractive forces give the 

cohesive properties. Generally the interactions between two entities 

(molecules or atoms are investigated in terms of potential energy u2(r) 

and not in terms of force   ). The potential energy 

    (potential) is calculated using quantum mechanics. 

     The potential associated with the repulsive forces between two 

atoms not overlapping, has usually the form: 

, 

    Where Pi(r) are polynomials in r and rci parameters depending on the 

individual atoms. This interaction potential takes into account the 

electrostatic repulsion exerted between the two nuclei and the effects 

due to the Pauli Exclusion Principle. In practice, simplified forms of 

 are used such as that of Born and Mayer [2]: 

                 , (1) 

     Where a and b are two constants determined by adjusting certain 

physical properties of the experimental results. But the value of b can 

also be estimated with good accuracy by the relation

, where a0 (= 0,0529 nm) is the Bohr radius and Z the atomic number. 

    Sometimes the following formula, in inverse power of r, is used: 

, (2) 

    Where c and m are two constants to be determined. 

 

 

Figure 1: Schematic representation of the dipole AB interacting with 

the point charge Q.

  

 

 

 

 

 

    Regarding the potentials associated with the attractive forces at long 

range, they contain various contributions that are better known than 

those of the repulsive potential. These attractive forces, discovered by 

London but called the van der Waals forces, result from the presence 

of dipoles or multipoles in molecules and atoms. 

2.2 Interaction between a Dipole and a Point Charge 

     In this subsection we recall the calculation of the potential energy 

of interaction between a dipole and a point charge (monopole), which 

is at the basis of the study of the van der Waals forces. An electrostatic 

dipole consists of a pair of two point charges of opposite signs, +q and 

−q, located at points A and B. The electric dipole moment is defined by 

the vector p: 

p = q.BA. (3) 

    To calculate the potential energy of interaction between the dipole 

and a point charge Q, we fix the point O in the middle of AB = l and 

assume that the charge Q is located at the distance OM = r (with r ≫ l) 

in the direction θ (Fig. 1). The potential energy is given by Coulomb’s 

law: 

,           (4) 

Where: so that: 

                                                 (5)  

 

 

 In substituting this result in equation (4), and taking into account of 

equation (3), we are in position to write the potential energy u(r) in the 

form: 

      .             (6) 

    It should be noted, in passing, that the electric field created by the 

dipole at the point M is E = −gradV, where V is the electrostatic 

potential associated with the potential energy u(r) by the relation u(r) 

= Q.V (r). Therefore, the electric field modulus at the point M is 

expressed as: 

. (7) 
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2.3 Intermolecular Interactions 

    Often, the potential energy is calculated between a set of charges qi, 

gathered in a small volume, and a point charge Q located at a distance 

r of this volume. 

     If the sum of charges in the volume is not zero (qi = 0, as in an ion), 

it can be taken that the total charge   is concentrated at the 

centroid, so that the potential energy is calculated with the formula: 

. 

    But to get better accuracy, the calculation has to be performed for all 

the individual charges, which amounts to evaluating the potential 

energy u(r) as an expansion in powers of 1/r. 

    If the sum of charges in the volume is zero ( qi = 0, as in a 

molecule), the first term of the series in 1/r is zero. In addition, if all 

the charges qi are reduced to a dipole (consisting of one charge −q and 

one charge +q), the potential energy between the point charge Q and 

this dipole is given by equation (6). It is proportional to 1/r2. But it may 

happen that the charges are reduced, not to a dipole, but to a quadrupole 

(set of 4 charges  arranged symmetrically about 

the centroid). In this case, the term 1/r2 is zero and the potential energy 

between the point charge Q and the quadrupole is proportional to 1/r3. 

If there is no quadrupole, the term 1/r3 is nonexistent and an octupole 

(set of 8 charges arranged symmetrically around the centroid) must be 

considered, and so on. Thus, a set of charges can be decomposed into 

multipoles (dipoles, quadrupoles, octupoles...) playing a significant 

role in certain circumstances. 

     The simplest polar systems are formed of monopoles. These 

systems, such as molten salts, consist of charges Q = ze (e.g. NaCl 

composed of charges +e and −e). Other polar systems are made up of 

permanent dipoles (hydrogen bromide composed of uncharged 

molecules with a dipole moment pd) or still of permanent quadrupoles 

(liquid nitrogen composed of molecules having a quadrupole moment 

pq). The potential energies between these various entities are calculated 

by direct application of the laws of electrostatics. For example, the 

potential energy between one point charge Q and one dipole moment 

pd is given by equation (6), i.e.: 

. 

      Similarly, the potential energy between one point charge Q and one 

quadrupole moment pq is calculated with the formula: 

. 

    In the case of the potential energy between two dipoles of dipole 
moments pd1 and pd2, it is expressed as: 

. 

 

     Figure 2: Positions and orientations of two dipoles separated by r 

along the z axis. The orientations are defined by the angles θ1, φ1, θ2 

and φ2. 

     Thus, it is possible to calculate the potential energies between all 

the entities: monopolemonopole (QQ), monopole-dipole (Qd), 

monopole-quadrupole (Qq), monopole-octupole (Qo)..., dipole-dipole 

(dd), dipole-quadrupole (dq)..., quadrupole-quadrupole (qq) ... and so 

on. All these expressions are given for specific position and orientation 

of the entities. As an example, figure (2) shows two dipoles separated 

by r on the z axis, where θ1 and θ2 are the angles between the dipoles 

and the z axis, and φ1 and φ2 are the azimuth angles. The five parameters 

r, θ1, θ2, φ1 and φ2 completely determine the positions of the two dipoles 

and the potential energy udd(r, θ1, θ2, φ1, φ2). 

    Keesom[3] suggested calculate the thermodynamic properties of 

these systems with the average potential energy u(r,T), obtained by 

integrating u(r) over all orientations of the molecules according to the 

relation: 

, (8) 

    Where the Boltzmann factor exp (−βu) is used, with , in 

order to give a greater weight to the orientations of molecules 

corresponding to states of lowest energy. As a result, the average 

potential energy  loses its angular dependence, but acquires a 

temperature dependence. Since these integrals are very difficult to 

calculate, the Taylor expansion of the exponential function is generally 
used around the average value of the potential energy, i.e.: 

. 

   This expression allows the evaluation of  by the equation [4]: 
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Below the expressions are shown for the average potential energies of the 

main molecular entities (monopole-monopole QQ, monopole-dipole Qd, 

monopole-quadrupole Qq and dipole-Dipole dd: 

. (9) 

    It is found that the greater the number of poles in a molecule, the faster 

the potential energy drops away with distance. Thus, the potential energy 

between monopoles varies like r−1, the dipole-monopole potential energy 

like r−4, the dipole-dipole potential energy like r−6. It is also demonstrated 

that the dipole-quadrupole potential energy varies like r−8, the 

quadrupolequadrupole potential energy like r−10, etc. 

    Sometimes a set of charges having no permanent dipole moment 

acquires an electric dipole moment when placed in an electric field. 

Indeed, it can be understood that a molecule composed of electrons and 

nuclei with no permanent dipole moment can, under the action of an 

external electric field, see the electrons and nuclei move in opposite 

directions, creating a new equilibrium configuration with an induced 

dipole moment. Naturally, superimposing permanent dipole moments on 

induced dipole moments is possible. In this case, the potential energy is 

composed of two contributions. One is due to the interaction between 

permanent dipoles and the other to the interaction between induced 

dipoles. 

    Usually, the purely electrostatic forces between polar molecules 

(permanent dipoles) are weaker than those acting between nonpolar 

molecules (induced dipoles), and might be therefore neglected. By 

contrast, in highly polar molecules, such as those of water or acetone, the 

electrostatic forces are masked by strong chemical interactions that 

depend on the orientation. These will not be discussed here. 

2.4 Interatomic Interactions 

    The electrostatic forces, which have been described in the case of 

spherical molecules (nonpolar), gain a special importance in the case of 

atoms. The reason is that the fluctuations of electron density in an atom 

produces an instantaneous dipole. Indeed, the movement of the electrons 

around the nucleus moves the centroid of negative charges, and 

contributes to the formation of an instantaneous dipole that fluctuates in 

magnitude and direction at the rotation frequency of the electrons (∼ 1015 

s−1). In addition, the electric field created by the instantaneous dipole 

affects the movement of electrons in a neighboring atom giving rise to an 

induced dipole, which fluctuates in phase with the first dipole. Generally, 

the two dipoles are aligned and exert one upon another a force of 

attraction. This force is called the dispersion force for the following 

reason. The electric field created by the instantaneous dipole of the first 

atom propagates at the speed of light towards the second atom, and the 

dipole induced in the second atom in turn emits an electric field in 

direction to the first atom. If the two atoms are close enough, the two 

dipoles fluctuate in phase and their directions are identical. But if the 

atoms are far apart from each other, a phase shift occurs between the 
electric fields, hence a disorientation of the dipoles 

 

    And a decrease in the strength of interaction. This effect is comparable 

to the dispersion of light in a medium of given refractive index. 

    The calculation of dispersion forces was made by London [5] with the 

perturbation theory of quantum mechanics, but the general expression can 

be established simply [6] using the model of the Bohr atom1. Considering 

the Bohr atom, it can be assumed that the instantaneous dipole moment, 

created between the nucleus and the electron, is roughly speaking (Eq. 3): 

                                  p1 ≃ ea0,                              (10) 

     Where e is the electron charge and a0 the Bohr radius: 

. (11) 

    The energy of the Bohr atom in its ground state, also called the 

ionization potential, is I = hν, where ν (= 3, 3.1015 s−1) is the characteristic 

frequency associated with the movement of the electron in its orbit. 

     The electric field produced by an instantaneous dipole at distance r 

from the atom (Eq. 7) is on average: 

. (12) 

 

     The energy of the Bohr atom in the ground state is: 

, 
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     With: 

m = 0,911.10−30 kg, 

e = 1,602.10−19 C, 

ε0 = 8,854.10−12 J−1.C2.m−1, 

h = 6,622.10−34 J.s. 

      But E0 (= −hν) also corresponds to the energy of the electron on its 

lowest orbit, of radius: 

M. 

    Then, the characteristic frequency associated with the movement of the 

electron on its orbit is given by the expression: 

, 

    Which links a0 with ν. 

     However, a second neutral atom situated in this electric field, at 

distance r, undergoes a polarization and acquires an induced dipole 

moment: 

, (13) 

     Where α is the polarizability of this atom. This quantity, which 

measures the ability to move the electronic distribution in the atom, is 

proportional to the volume of the atom: 

. (14) 

     Thus the potential energy of attraction between the dipoles p1 and p2 is 

obtained by performing the product of the dipole moment of the second 

atom (Eq. 13) by the electric field, on this spot, created by the first atom 

(Eq. 12), namely: 

. 

    Therefore, using equations (11) and (14), the potential energy between 

two atoms separated by distance r is written as: 

, (15) 

     Where the constant  depends on the square of the 
polarizability α and the ionization potential hν, as could be demonstrated 
by a precise calculation using quantum mechanics. 

     In dense systems, the presence of a third atom brings a further 

contribution to the twobody potential (Eq. 15). This is a three-body 

potential calculated by taking into account the dispersion forces between 

three dipoles [7], [8]. The analytical expression of the triple dipole 

potential, varying as r−9, is expressed as a function of the atomic 

polarizability α and the constant C6 as: 

,                 (16) 

   Where the angles θ1, θ2 and θ3 are those of the triangle formed by three 

atoms (1,2,3) with sides r12 = |r2 − r1|, r23 = |r3 − r2| and r13 = |r3 − r1|. 

     It should be mentioned that the full calculations of the two-body 

potential  and threebody potential  allow 
us to generalize equations (15) and (16), respectively in the following 
forms: 

      

                                           

(17) 

     The 

various terms of these expressions have been calculated by the 

perturbation theory to fourth order, applied to the electronic structure of 

atoms. The details of these issues will be found in specialized articles [9], 

[10], [11]. 

2.5   Potentials in Liquid Rare Gases 

    Although the coefficients C6, C8, C10 in equation (17) are related to the 

energies of atoms, their values are only approximate. For example, for 

argon, they are: 

. 

    With a value of the atomic polarizability α = 1, 64.10−3 nm3 and an 

ionization potential of I = 17, 5 eV, the calculated value of C6 is worth 

about 9/10 of the experimental value. The values of the coefficients Ci are 

only approximate and the attractive potential in liquid rare gases are not 

rigorously defined. It is a matter of fact that the calculation of the 

repulsive potential is even more questionable. This explains why the 

construction of potentials in liquid rare gases is a combination of ab-initio 
and empirical calculations. 

     The first explicit calculation of the interaction between two helium 

atoms has been done by Slater and Kirkwood [12]. The resulting 

expression is the sum of a decay exponential function for the repulsive 

contribution and a power function varying as r−6 for the attractive 

contribution: 

, 

     Where a,b and C6 are three constants. It is found that the repulsive 

interaction is of the BornMayer type (Eq. 1) and the attractive interaction 

is due to induced dipole-induced dipole dispersion forces (Eq. 15). 

     One of the most realistic two-body potentials for noble gases has been 

proposed by Aziz and Slaman[13] under the form: 

, 

     Where x = r/rm is the reduced distance and rm the position of the 

potential well. To eliminate the divergence introduced by the terms of 

dispersion to small distances, the authors have chosen to use the 

amortized function F(x): 
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   if          x < D 

 …………………………………..   If  x ≥ D. 

    This potential model is composed of eight parameters determined by 

fitting some experimental quantities, the values of which will be found in 

the original article, for various rare gases. It should be noted that this 

potential is a pair potential and that the three-body Axilrod-Teller 

potential have to be added to improve the accuracy of calculation of the 

physical properties. 

3   Law of Corresponding States 

3.1      EMPIRICAL POTENTIAL 

    To facilitate the study of properties of liquids, it is desirable to use 

simpler expressions of the potential, although realistic, in order to 

simplify the analytical calculations. For example, the Gaussian potential 

is sometimes used to represent the repulsive part at short distance, 

because it facilitates the calculation of integrals that contain it. Also, the 

square-well potential: 

 

     Is widely used for its simple mathematical form. It correctly predicts 

the thermodynamic properties and the local structure of liquids. Without 

the square well, this potential reduces to the hard-sphere potential, which 

is also widely used. 

     There are a plethora of empirical potentials, but one that seems most 

appropriate to investigate the simple liquids is the Lennard-Jones 

potential. It is representative of many real potentials, insofar as it can 

describe numerous physical properties, without undue complexity of the 

calculations. Its general form is: 

, (19) 

    Where ε and σ are two parameters to be determined. The most 

commonly-used expression is that with n = 6 and m = 2n = 12. With a 

repulsive part varying as r−12 and an attractive part as r−6, it owns strong 

physical justification in view of equations (2) and (15). Moreover, the 

choice of the parametrization is particularly suited to the mathematical 

description of the function u(r). Indeed, σ is the value of r that makes the 

potential zero and ε is the depth of the potential well. By calculating the 

derivative , it is easy to see that the minimum position of the 

potential well is located at rm = 21/6σ, with u(rm) = −ε. The values of the 

parameters σ and ε are determined by fitting some experimental 

properties. They also allow estimating the coefficient C6(= 4εσ6). For 

argon, the value of C6 resulting of the empirical values of ε and σ is almost 

two times larger than the theoretical result. 

    Despite its limitations, the empirical potential of Lennard-Jones has a 

universal behavior favouring the study of many simple liquids, which 

differ from each other by the scale factors σi/ σj and εi/ εj. Indeed, it is 

reasonable to assume that the potential u(r) of each simple liquid can be 

represented in terms of a universal function u∗(r) as: 

, 

   Which is typical of the Lennard-Jones potential. 

    Note that the equation of state of liquids is expressed by means of the 

configuration integral ZN(V,T), according to the equation: 

. (20) 

     Using the expression for ZN (V,T), the pressure is given by the 

following equation[14]: 

, 

    Where U (rN) = i j>i u (rij) is the potential energy of liquid consisting of 

N atoms. When the potential energy is assumed to be a sum of pair 

potentials of the universal type: 

, 

     The pressure may be written in the functional form: 

, (21) 

     Where  is a dimensionless function depending on the 

nature of the potential u∗, i.e. the parameters ε and σ. It follows that the 

pressure depends on the temperature T, the volume V and the universal 

function u∗, through the function g∗. However, if the two parameters ε and 

σ are used to define the reduced variables: 

, 

      Equation (21) takes the reduced form: 

 

Or:                                                                                                                                              

(22)                                                               

 

    This shows that the reduced pressure p∗ is a universal function of the 

reduced temperature T∗ and the reduced volume V ∗, for all the liquids 

described by a potential of the form . Equation (22) is 

known as the law of corresponding states stipulating that all the liquids 

of the same family, interacting with the potential u∗, obey the same 

equation of state in terms of reduced variables. As this reduced equation 

of state must apply to all the thermodynamic states, notably to the critical 

state, it is required that the values of  and  are universal 

constants for all the liquids described by the potential u∗. For the Lennard-

Jones potential (12-6), the approximate values are
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 and , so that the product is equal 

to . The experimental values of  found for simple 

liquids [4] (Ar, Kr, Xe, N2, O2, CO2, CH4...) are about 0.290 ± 0.005, 

which yields an acceptable test of the theory. 

 

3.2    Relationship between Potential and Limits of Phase 

Stability 

    One of the successes of numerical simulation has been to establish a 

relationship between the features of the interatomic potential and the 

limits of stability of phase diagrams, thus clarifying the circumstances of 

the liquid-solid and liquid-vapor transitions. It has been shown, in 

particular, that the hard-sphere potential is able to correctly describe the 

atomic structure of liquids and predict the liquid-solid transition [15], 

[16]. By contrast, it is unable to predict the liquid-vapor transition, which 

is due to the presence of attractive dispersion forces. More specifically, 

the simulation results have shown that the liquid-solid phase coexistence 

curves are governed by the repulsive part of potential, that is to say, by 

the steric hindrance of the atoms. This was already contained in the 

phenomenological theories of melting, like the Lindemann theory that 

predicts the melting of a solid when the average displacement of atoms, 

relatively to their equilibrium positions on the lattice, exceeds the atomic 

diameter of 10%. In other words, a substance melts when its volume 

exceeds by 30% the volume at 0 K. 

     Figure (4) displays the diagram p(T) of a pure substance as well as the 

Lennard-Jones potential (Eq. 19). One can see how the slope of the 

coexistence curve for solid-liquid phase varies with the repulsive part of 

the potential. Indeed, the greater the value of m, the steeper the repulsive 

part of the potential (Fig. 4b) and the less sloping the solid-liquid 

coexistence 

 

Figure 4: Schematic representations of the diagram p(T) and the Lennard-Jones potential. 

    Curve (Fig. 4a). Moreover, it becomes apparent that the Lennard-Jones 

potential predicts the liquid-vapor coexistence curve that begins at the 

triple point T and ends at the critical point C. A detailed analysis shows 

that the length of the segment TC is proportional to the depth of potential 

well ε. For rare gases, it is verified that (TC −TT)kB ≃ 0.55 ε. It follows 

immediately from this relation that the liquid-vapor coexistence curve 
disappears when the potential well is absent (ε = 0). 

     In addition, the value of the slope of the segment TC also depends on 

the attractive part of the potential as shown by the Clausius-Clapeyron 

equation: 

, (23) 

     Where Lvap is the latent heat of vaporization at the corresponding 

temperature Tvap and (Vvap − Vliq) the difference of specific volumes 

between vapor and liquid. To evaluate the slope dT
dp of TC, at ambient 

pressure, we can estimate the ratio  with Trouton’s rule (  

J.K−1.mol−1) and the difference of volumes (Vvap −Vliq) in terms of width 

of the potential well. Indeed, noting that the quantity (Vvap−Vliq) is an 

increasing function of the width of potential well, which itself increases 

when n decreases, we remark that the value of the slope of the liquid-

vapor coexistence curve decreases as n is decreasing, for a given well 
depth ε. 

     For liquid metals, it should be noted that the repulsive part of the 

potential is always softer than for liquid rare gases. Moreover, even if ε 

is slightly lower for metals than for rare gases, the report  is 

much higher (between 2 and 4), which explains the elongation of the 

segment TC compared to that of rare gases. Also we mention that some 

flat-bottomed potentials [17], [18], [19] are likely to give a good 

description of the physical properties of elements having a low value of 

the ratio . Such potentials are obviously not suitable for liquid rare 

gases, for which , or organic and inorganic liquids, for which 

0.  . By contrast, they might be useful as empirical 

potentials for metals with low melting point, such as mercury, gallium, 

indium, tin, etc. with a ratio . 

   4. A Weak Electron-Ion Interaction 

4.1 The Schrödinger Equation 

    The atoms of rare gases considered in the preceding subsection have 

electronic shells completely filled. This ensures the stability of their 

electronic structures and allows treating the rare gases as liquids 

composed of single atoms. In contrast, the atoms in liquid metals have 

few electrons in the outer envelope - the valence band or s band. They 
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are called the normal metals, such as alkali metals, which have a single 

electron in the s band. The easiness with which they can lose the valence 

electron gives them a high electronic conductivity. The polyvalent metals 

with several valence electrons are also assumed to be normal metals. In 

contrast, the noble metals and transition metals that possess, in addition 

to the valence electrons, a narrow d strip overlapping the s band cannot 

be treated like normal metals, because there are interactions (s-d 

hybridization) between s electrons and d electrons participating in 

conduction. 

    In normal metals, the conduction electrons, separated from ions, 

constitute a free electron gas that plays an active role in determining the 

energy of the system while the core electrons, tightly bound to nuclei, 

have no major impact. These considerations put forward by Drude, a 

century ago, suggest to consider the liquid metal as a mixture of ions 

interacting within the free electron gas and to write the energy E of the 

liquid metal as a sum of two terms: 

                                E = Nug(V,T) + UN(V,T,R1,...,RN), (24) 

    Where the first term is the energy contribution that depends on the 

temperature and volume of N ions, and the second term is the energy 

contribution depending, in addition, on the configuration of ions in 

positions Ri. It will be seen later that this contribution can be written as 

the sum of effective pair potentials: 

                                
, (25) 

    Between entities (pseudoions), which differ noticeably from the 

genuine ions. The sum i j=i and the factor 1/2 come from the fact that the 

interaction between a pair of particles should not be counted twice. The 

effective potential u (Rij) has a functional form that depends on the 

volume and the temperature, as well as on the capacity of the electron gas 

to screen the ions. 

     The calculation of the energy E is a complicated problem of quantum 

mechanics solved by the perturbation theory to second order of the 

pseudopotential, i.e. the interaction between an electron and an ion. 

    Since a liquid metal is considered as a set of ions of charge Ze (where 

Z is the valence), imbedded in the free electron gas, its dynamic state can 

be described owing to the Schrödinger equation: 

                                                                     Hψ = Eψ, (26) 

      Where H is the Hamiltonian of the system, ψ the wave function and 

E the energy. The Hamiltonian operator H contains all the forms of 

energy such as kinetic energies of the free electrons and ions: 

, 

     And potential energies of the electron-electron, ion-ion and electron-

ion interactions: 

,                      (27) 

    In such a scheme, the ions of mass M have coordinates Rα and the free 

electrons of charge e and mass m have coordinates ri. 

     To solve the Schrödinger equation (Eq. 26), it is essential to reduce 

the system of (Z +1) N particles1 into interaction to a system of 

independent particles, with reasonable simplifications, this in order to 

write the wave function ψ of the system as a product of wave functions 

of all the particles and the total energy E as a sum of energies. 

     The first simplification (adiabatic approximation) takes into account 

the difference between the masses of the electrons and ions. The 

assumption made here is to admit that the ions are heavier and immobile 

with respect to the electrons whose movements are much faster2. With 

this simplification, the ion-ion interaction energy Uio−io must be 

calculated separately and added to the electronic energy Eel coming from 

the electronic Schrödinger equation: 

(28) 

     Where ψel represents the wave function of the electrons in presence of 

the ions. 

                                                           
 

     A second simplification is needed to solve the above equation, which 

is not yet related to a single electron because of the double sum on i and 

j in the term i j=i Uel (|ri − rj|). Obviously, equation (28), describing the state 

of ZN electrons interacting in the presence of the ions, could be reduced 
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to an equation for one electron if there was no interaction between 

electrons (Uel = 0) since the Hamiltonian would be decomposed into a 

sum of ZN Hamiltonians. In the case of a system of interacting electrons, 

the reduction of equation (28) is however possible through the Hartree 

approximation. The latter consists in (1) approximating the many-

electron wave function ψel as a product of single-particle functions: 

ψel(r1,r2,...,ri,...) = ψ1(r1)ψ2(r2)...ψi(ri)..., 

And (2) replacing the energy of electron-electron interaction, Uel−el, by 

a function - the Hartree potential WH (ri) - representing the potential 

energy of the electron i in the field of all the other electrons: 

, 

Where the Hartree potential satisfies the Poisson equation4: 

. 

The expression of WH (ri) is: 

, 

 
 
 
     Where its physical meaning is as follows: (1) 

 represents the charge density of the 

     Electron cloud produced by the electron j, (2) the quantity   

   is the electric charge 

    Of the volume element drj and (3) the integral   

 is the interaction energy of the electron i 

with the electron j. Note that the potential energy WH (ri) of the electron i 

depends not only on the movements of all the other electrons but, 

indirectly, on its own motion, which consequently influences the 

movements of the other electrons. In view of this, the function WH (ri) 

determines not only the motion of the electron i but also depends on it. 

The determination of the function WH (ri) is made, in principle, in a self-

consistent manner by iterative calculations. 

     Thus, the implementation of the Hartree approximation enables us to 

write the Hamiltonian of equation (28) as: 

, 

     And to reduce the Schrödinger equation for multiple electrons (Eq. 28) 

to the equation for a single electron: 

,              (29) 

     Where the wave function of the system ψel is equal to the product of 

the single wave functions     and the electronic energy of 

the system is equal to the sum of the energies of each electron 

 

     It should be mentioned that the Fermi statistics can be incorporated 

into the Hartree approximation in replacing the product of single wave 

functions by orbitals under the form of a Slater determinant. This new 

scheme, known as the Hartree-Fock approximation, leads to an additional 

term in the Schrödinger equation taking account of the exchange effects, 

which improves the total energy computation. Note that the correlation 

effects can also be included in the calculations. In the following, we will 

introduce the exchange and correlation effects through the screening and 

pseudopotential theories, without resorting to the Hartree-Fock 
approximation. 

4The Poisson and Coulomb equations are written in the rationalized 

M.K.S. unit system (SI units) as ∇2Φ(r) ∝  and  

 
. 

4.2 Concept of Pseudopotential 

    The two foregoing simplifications have been made to reduce the study 

of liquid metals to that of an independent electron. But the resolution of 

equation (29) is not yet possible because the electron-ion interaction 

energy Uel−io(r) and the Hartree potential WH (r) are unknown functions. 

    Consider first the potential of electron-ion interaction. If the electron i 

is close to the ion α, the most important energy contribution is provided 

by the electrostatic potential between the electrons i and the ion α (Fig. 

5). This potential has a deep well surrounding the ion and varies as 1/r 

when the electron moves away. Regarding the interactions between the 

electrons i and all the other ions, they are very weak when the distance 

separating them is large. Thus they provide no significant contribution to 

the energy Ei, so that the dominant feature of the sum   α Uel−io (|Rα − 

ri|) is to depend only on the interaction between the electron i and the 

nearest ion. 

    To solve the Schrödinger equation for one electron (Eq. 29), the 

perturbation theory independent of time is required. This method can be 

implemented only when the potential energy operator is small enough to 

be treated as a perturbation. However, this is not the case because of the 

divergence of the potential α Uel−io (|Rα − ri|) for ri ≃ Rα. To by-pass 

this difficulty, the true wave function ψi is replaced by a pseudofunction 

χi, smooth on the outside and the inside of the ion, with the aim of 

transforming the potential energy operator, α Uel−io (|Rα − ri|), into a 

pseudopotential W0 (r) = 
α w0 

(|Rα − ri|) sufficiently small everywhere to 

justify the use of the perturbation theory. 

     The pseudopotential theory proposed by Phillips and Kleinman[1] is 

based on theoretical foundations that will not be discussed here. In turn, 

we provide a justification to the fact that the pseudopotential W0 (r) is 

small throughout the system, and give a simple analytical expression for 
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the individual pseudopotential w0(r) based on the following arguments. 

As already mentioned, the potential felt by the electron i in the vicinity of 

the ion α is a Coulomb potential equal to . But the 

electron i is also subjected to a repulsive potential generated by the core 

electrons of the ion α due to the Pauli exclusion principle, which can be 

represented by a Dirac peak +λδ(|Rα − ri| given the small size of ions. 

Therefore, in the vicinity of an ion, the pseudopotential w0(r) may be 

taken to be the sum of these two contributions (Fig. 5) using, for instance, 

the representation of the analytical model of Ashcroft [20]: 

     In this model, it is assumed that the repulsive potential cancels 

completely the attractive potential in a sphere of radius Rc to be 

determined. Obviously, there are models in which the potential in the core 

is not zero. Some, like that of Ashcroft, has a simple analytical form. 

Others are operators (non-local pseudopotentials) and, therefore, have no 

simple analytical form [21], [22], [23], [24]. All calculations presented in 

the sequel will be made with the Ashcroft local pseudopotential. 

     If it is accepted that a low pseudopotential W0 (r) exists, the problem 

of one free electron in the collection of the ions and other electrons might 

be then solved. To do this, we rewrite equation (29) with the 

pseudopotential W0 (r) and the pseudo wave function χk(r), in removing 

. 

Figure 5: Analytical model of the Ashcroft pseudopotential  

The index i and using the classical notations of quantum mechanics3: 

, (31) 

with:  

W (r                                    W(r) = WH (r) + W0 (r). (32) 

    Then, the electronic energy E(k) may be determined with the 

perturbation theory by adopting the free electron model as zero order 

approximation. This model states that the Schrödinger equation of one 

free electron in a box of volume V is written: 

. 

     It is found that this equation admits a solution under the form of a 

plane wave: 

, (33) 

     And has an energy spectrum given by: 

. (34) 

    Thus, in the zero order approximation, the energy of one free electron 

E0 (k) varies continuously with the square of the wave vector k. 

Moreover, the electronic energy of the system composed of NZ free 

electrons is: 

, (35) 

     Where  is the wave vector at the Fermi level. 

5. Form factor, structure factor and electron energy 

5.1 Perturbation theory for non-degenerate states 

    The perturbation theory aims to determine the corrections to the energy 

E0 (k) and wave function χ0
k(r) of the free electron system, when a 

perturbation W (r) (Eq. 32) is imposed. In this section, we briefly describe 

                                                           
 

the time independent perturbation theory to second order4 for non-

degenerate states, because it is the only useful result here. 

     Consider the unperturbed quantum system governed by the 

Schrödinger equation: 
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                     Hϕˆ 0
α(r) = Eα

0ϕ0
α(r), (36) 

    Where the discrete spectrum of eigenvalues  and eigenfunctions 

 of the Hamiltonian Hˆ are assumed to be known. As the quantum 

states are not degenerate, only one wave function corresponds to each 

value of energy. In what follows, it is proposed to determine the 

approximate solutions of the wave function ψβ(r) and energy Eβ of the 

quantum system subjected to the weak perturbation Wˆ, whose equation 

Schrödinger is: 

                                                     (Hˆ + λWˆ) ψβ(r) = Eβψβ(r), (37) 

    Where λ is a parameter primarily used to facilitate the analysis. It takes 

the value 0 when the system is not perturbed and 1 when the system is 

perturbed. 

     To find the solution of this equation, use is made of the Dirac 

prescription that consists in expanding the unknown wave function ψβ(r) 

on the basis of the eigenwave functions ϕ0
α(r), namely: 

. (38) 

     This expansion is then substituted in equation (37): 

, 

      Which, with equation (36), may be put in the form: 

. 

      Multiply now the left hand side by  and integrate over the domain 

concerned. The result is: 

 

 

       And after simplifications7, this relation becomes: 

. (39) 

     The perturbation theory sets itself as a goal to seek the energy Eβ and 

the coefficients cβα, likely to solve equation (37), under the series 

expansions: 

                            Eβ=Eβ0 + λEβ(1) + λ2Eβ(2) + ...                  , (40) 

                              Cβα=c0βα + λc(1)βα + λ2c(2)βα + ...                              

     Where the quantities Eβ
0 and c0

βα correspond to the unperturbed system 

(zero order approximation), Eβ
 (1) and c (1)

 βα to the first order corrections, 

etc. By inserting the previous expansions in equation (39), it comes: 

 
     

    To determine the first order correction of the perturbed system, we 

neglect the powers of λ greater than or equal to two in equation (41) and 

take λ = 1: 

. 

It results from the above relation that: 
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   Since the base formed by the eigenfunctionsis orthonormal, 

the three terms of the previous equation are reduced, respectively, to: 

, 

, 

, 

    Where  is the matrix element of the 

perturbation. 

     With these conditions in mind, the first order approximation of the 

energy Eβ (Eq. 40) and wave function ψβ(r) (Eq. 38) of the perturbed 

system are written: 

. (43) 

     Then, to determine the second order correction of the perturbed 

system, we ignore the powers of λ greater than or equal to three in 

equation (41) and take λ = 1: 

. 

      In the case where γ = β with β = α, for which Eβ
 (1) = 0, the above 

relation reduces to: 

 

     Now, in substituting  in the previous equation, with the help of 

equation (42), we obtain the energy to second order: 

. (44) 

5.2   Factorization of the matrix elements 

    In the study of liquid metals, it is not necessary to go beyond the 

approximations to second order for the energy (Eq. 44) and first order for 

the wave function (Eq. 43). Consequently, the energy E(k) and the wave 

function χk(r) of one conduction electron, in the system subjected to the 

perturbation W(r), can be evaluated in rewriting equations (44) and (43) 

with the notations for the energy and the matrix element of the 

perturbation adapted to the problem: 

     Where the first terms of these series correspond to the energy and the wave function of the free electron model (Eqs. 33 and 34), while the corrective 

terms depend on the matrix element:

    Which is responsible for the diffusion over a surface of constant 

energy. Indeed, k + q|W|k is the expression of the diffusion of a 

conduction electron from the initial state defined by the wave vector k to 

the final state k′ = k+q, by the total pseudopotential W(r) weakly 

                                                           
 

scattering. Since the matrix element must be calculated with the 

pseudopotential W0(r) of the bare ion plus the Hartree potential5 WH (r) 
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(Eq. 32), the total potential W(r) is written as a sum of individual 

pseudopotentials centered on the ions, under the form : 
      W(r) = WH (r) + W0 (r) =  w(|Rα − r|).                               (48) 

       Finally, the expression of the matrix element is found in inserting 

equation (48) in equation (47): 

    Since (Rα − r) is a dummy variable, we pose X = r − Rα in order to 

achieve the factorization of the matrix element as: 

 

With:

      It should be stressed that the square of the matrix element in equation (45) is usually written as: 

where k + q|w|k is the form factor resulting from the individual potential 

of the ion and S(q) the ionic structure factor, which depends on the 

position of the ions and can be directly measured by X-ray or neutron 

scattering. Its definition is: 

. 

     In the framework of the perturbation theory briefly presented, it is 

found that the electron energy Eel of a metal is equal to the sum of the 

energies E(k) of all the free electrons. In practice, the perturbation theory 

performs the calculations in the reciprocal space and not in the direct 

space. Therefore, the electronic energy Eel is calculated in k-space in 

doing the sum of all the energy states occupied in the Fermi sphere of 

radius kF , with the expression9: 

 

     Where E (k) is given by equation (45). The electron energy Eel of a 

metal may thus be put under the form10: 

      (53) 
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6. Screening theory in the Hartree approximation 

  6.1     Form factor of the Ashcroft pseudopotential 

     As a rough guide, the form factor of Ashcroft’s pseudopotential w0 (r) will be calculated by substituting equation (30) in equation (50): 

The integration in the above relation is better carried out with the 

spherical coordinates: 

                          d3r  = r2 sinθdθdϕdr, 

                                    And             qr       =          qrcosθ, 

    After placing the vectors q and r as shown in figure (6). With this 

change of variables, the form factor becomes: 

     To perform the integration on the variable θ, we take µ = cosθ ranging from 1 to −1, with dµ = −sinθdθ,whichgives: 

     9The transformation of the discrete sum into an integral over k is done 

by using the formula: 

 

    The number of electrons in the unit volume of the k-space is . 

However, for a free electron system, the volume occupied by the electrons 

in k-space is a sphere of radius kF, called the Fermi sphere. Therefore, 

the number of free electrons NZ is the product of the number of electrons 

per unit volume multiplied by the volume of the Fermi sphere: 

, 

Hence 

    10From now, it is important to note that the energy Eel does not 

correspond exactly to the electronic energy of the metal because, to 

perform its calculation, the electron-electron energy is counted twice. 

Therefore, the latter should be subtracted at any time. 

 
Figure 6: Positions of the vectors q and r to calculate the form factor w0 

(q). 

     Where the integral in square brackets is: 

. (54) 
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 Before performing the integration over r, we replace the pseudopotential 

by its expression (Eq. 30) and introduce the damping factor exp(−αr) that 

will disappear at the end of the calculation by letting α go toward zero, as 

follows: 

6.2  Matrix Element of the Hartree Potential 

     In the preceding subsections, the expression of the electronic energy 

of metals has been derived as a 

function of E (k) (Eq. 53). The energy E(k) is the energy of one given 

conduction electron in interaction with the ions and the other electrons of 

the system, and it depends on the total pseudopotential W(r) = WH (r) + 

W0(r) via the matrix element k + q|W|k (Eq. 47). However, this matrix 

element is only partially known. Indeed, there is an expression for the 

matrix element k + q|W0|k of the bare pseudopotential (Eq. 55), but not 

any for the matrix element k + q WH k! Containing the electron-electron 
interactions in the Hartree approximation. 

    To find the expression of the matrix element k + q WH k!, use is made 

of the screening theory[25] based on the concept of dielectric function. 

The principle of the method is to deterk + q|W|k = k + q WH k! + k + 

q|W0|k as a function of the electronic cloud density! Mine, in a self-

consistent manner, the matrix element k + q WH k and the matrix element 

     n(r). The method consists of calculating the electron density with the 

wave function (first postulate of quantum mechanics) by jointly using the 

Poisson equation. Thus, the electron density n(r) is given by the sum, over 

all occupied states in the Fermi sphere, of the product of the pseudo wave 

functions χk(r) (Eq. 46) by its complex conjugate , that is to say: 

 

Or: 

     Where it has been written: 

 

, (56) 

    So that the total electron density is: 
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The constant term corresponds to the uniform distribution of negative 

charge that compensates the positive charge of the ions. And the 

remaining terms represent the oscillating charge density, screening the 

ions, which is directly related to the Hartree potential WH(r) by Poisson’s 

equation. By neglecting the terms of the expansion to the higher order 

than one, in the pseudo wave function, the oscillating electronic density 

nosc(r) reduces to: 

    Because  by the 

definition of aq(k). 

    As far as Poisson’s equation  is concerned, 
where Φ(r) is the electrostatic potential, it is rewritten with the Hartree 
potential WH(r) = eΦ(r) as: 

. (58) 

    To implement the method, it is easier to combine equations (57) and 

(58) after performing 

    The standard transformations in k-space11: 

 
WH( = . (60) 

By comparing equations (57) and (59), and by calculating the Laplacian 

of WH(r) with equation (60), we obtain the following relations:(61) 

The insertion of these expressions into equation (58) enables us to write 

the Poisson equation under the algebraic form: 

, 

    (62) 

 The Hartree potential Wq
H is then written explicitly in terms of the matrix 

element | k + q|W|k|, by using equations (61) and (56): 

, 

     From which we arrive at the following final expression, by taking 

account of the formula given in footnote 9: 

      (63) 

6.3 Concept of Dielectric Function 

     In order to pursue the calculation of the Hartree potential (Eq. 63) 

without too much difficulty, assume that the pseudopotential is local. It 

therefore follows that the matrix element 

 

        11The transformation of the discrete sum into an integral over q is done 

by using the formula: 

 

       This allows us to define the Fourier transform: 

 

With: 

         

 

 It is the same for the function 
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 Figure 7: Choice of the integration variables for calculating the integral 

in equation (64), into the Fermi sphere. The shaded area corresponds to 

the volume element d3k. 

    | k + q|W|k| depends only on q and can be extracted from the integral 

over k, which is not the case in the complete theory [23], [26], [27]. The 

calculation of  is thus reduced to that of the integral: 

. (64) 

     To achieve the integration over the states contained in the Fermi 

sphere, the sphere of radius kF is first drawn, then the transfer vector q is 

placed along the z-axis (Fig. 7) and the following change of variables is 

performed: 

z = kF cosθ, 

     So that the element of integration is the disc of volume: 

d3k = π kF
2 − z2 dz. 

     Moreover, as indicated by Hubbard [28], the integration merely 

depends on the values of the wave vector remote from those of the Fermi 

wave vector kF. This greatly simplifies the calculations because it is 

sufficient to integrate over the states k ≃ kF , by setting: 

k2 − |k + q|2≃ k2
F − |kF + q|2 = kF

2 −9( kF
2 + 2qkF cosθ + q2 ), 

≃−q2 − 2qz. 

   The integral I reads: 

 
    And its result reduces to the expression6: 

. 

                                                           
 

    Further, the integral I is simplified by putting

: 

. (65) 

    The substitution of equation (65) into equation (63) is then done to 

express the Hartree potential  depending on the matrix element | k + 
q|W|k| of the total pseudopotential as:  

  Where the Lindhard[29] function X0(q) defined by the following 

expression has been used: 

 

.                               

(67) 

    Thus, according to equation (66), the Hartree potential  is related 

to the matrix element | k + q|W|k| via the Lindhard function X0(q). But 

from the screening theory, the total pseudopotential is equal to the sum of 

the bare pseudopotential and Hartree potential (Eq. 32), so that the 

Hartree potential is written in k-space as: 

. (68) 

     In eliminating  between equations (66) and (68), the expression 

of the matrix element | k + q|W|k| of the total pseudopotential is also 

expressed in terms of the matrix element | k + q|W0|k| as follows: 

,                    ( 69) 

hence: 

 

, 
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Figure 8: Schematic representations of the bare form factor w0(q) and the 

screened form factor w(q), as well as the Hartree dielectric function ε(q). 

      Where the Hartree dielectric function εH(q) is defined by the 

expression: 

,                 (70) 

.              (71) 

    This ends the screening theory that enables us to evaluate the electronic 

energy Eel by making possible the calculation of the matrix element | k + 

q|W|k|, which enters equation (53). It should be realized, in particular, 

that the form factor | k + q|w|k| of the total pseudopotential, also known 

as the screened pseudopotential, is obtained by simple division of the 

form factor | k + q|w0|k| of the bare pseudopotential by the dielectric 

function εH(q). Lastly, the expression of the form factor of the Ashcroft 
screened pseudopotential (Eq. 55) becomes: 

. (72) 

     Incidentally, the Hartree potential  can be also expressed in terms 

of the matrix element | k + q|W0|k|, in using equations (68) and (69), under 

the form: 

                                                           
 

. (73) 

     As an indication, the bare and screened form factors as well as the 

dielectric function are depicted in figure (8). It should be mentioned that 

the curves representing the functions w (q) and w0 (q) differ only for 

values . The mathematical study of these functions poses no 

difficulty. The salient characteristics of the curve w (q) = | k + q|w|k| are 

the damped oscillations, the value of the first node, at , and the 

value at the origin that is . This value is found by calculating the 

limit of | k + q|w|k| at q = 0. It is easily obtained by using the relation 

 (see footnote 9) and by looking at the behavior of the 

dielectric function εH(q). The latter is a decreasing function varying 
between the limits: 

               When q → 0, 

                         when  q → ∞. 

But its most striking feature is the logarithmic singularity at q = 2kF. 

Indeed, it can be verified    that7: 

, 

 

    This singularity is not visible to the naked eye on the curve, but 

nevertheless it is the source of the oscillations of interionic potential in 

liquid metals. 

7. Interionic Potentials in Liquid Metals 

    With the matrix element | k + q|W|k| (Eq. 69) in hand, we are able to 

calculate the electronic energy Eel defined by equation (53). Given the 

simplifications recommended in the screening theory, the expression of 

Eel is: 
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      It is easy to check that the first term on the right hand side corresponds 

to the Fermi energy  of the free electron gas, with

 (Eq. 35). The second term on the 

 

    RHS represents the average energy Eel
 (2) = k|W|k. As regards the third 

term, Eel
 (3), it is much more interesting because, unlike the first two terms, 

it depends on the ionic configuration and it is at the origin of the 

calculation of the interionic potential. Let us consider it carefully. With 

equation (63) that is recalled below: 

 
 

The term  turns into: 

. 

       However, when use is made of equations (69) and (73), repeated 

below: 

and  , 

     The contribution Eel
 (3) can also be written as a function of the matrix 

element | k + q|W0|k| of the bare pseudopotential and the dielectric 

function εH(q): 

,    It should be recalled that the electronic energy Eel includes the electron-

electron energy as well as the electron-ion energy. In the Hartree-Fock 

method, which has been used to calculate Eel = i Ei, the energy of each 

electron (Eq. 29) is calculated in the field of ions and all other electrons. 

Therefore, the interaction energy between each pair of electrons (i,j) is 

counted twice, once when the electron i is at the origin and once when the 

electron j is at the origin. Thus the electron-electron Eel− Eel  must be 

subtracted from the electronic energy Eel    (see footnote 10). In view of 

this, Eel− Eel is evaluated in terms of the Hartree potential W 
H

(r) and oscillating 

electronic density nosc(r) by the formula:
 

 

 

. 

    Then, taking account of equation (62), we replace  as a function of 

 and rewrite the interaction energy Eel−el as: 

. 

 

 

 

 
    Finally, equation (73) is employed to express the interaction energy| | | 

| H (q) as: Eel−el in terms of the matrix element k + q W0 k and dielectric 

function ε 

.           

(74) 

    This expression represents the electron-electron energy to be 

subtracted from the electronic energy Eel. But the full calculation of the 

energy of liquid metals requires that the ion-ion energy Eio−io, defined by 

equation (27), is added to (Eel − Eel−el). The combination of all these 

terms leads to the expression of the energy of liquid metals: 

, 
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, 

Or still, in the simplified form: 

       (75) 

     This is the expression for the total energy of liquid metals identified 

in equation (24). Before comparing equations (24) and (75), we transform 

the third term on the right hand side of equation (75) with the intention of 

splitting off the energy contribution depending on the ionic configuration 

from that which does not depend on it. To do this, the matrix element is 

separated by using equation (51): 

. 

      This relation allows writing the third term of equation (75) in the 

following manner: 

  (76) 

As a function of the energy wave number characteristic: 

.                     

(77) 

     Because 

 the 

second term in braces of equation (76) is equal to F(q). As it does not 

depend on the ion configuration, it may be gathered with the terms  

and  to form the contribution to the energy of liquid metals Nug(V,T), 

which is only a function of the volume and temperature. By contrast, the 

                                                           
 

first term in braces of equation (76) plus the ion-ion interaction Eio−io 

provide together the contribution to the energy of liquid metal

, which depends on 

the volume, temperature and configuration (Eq. 25). This last 
contribution takes the form: 

. 

      To evaluate this energy contribution, we replace the discrete sum over 

q by an integral8 and take Rβ − Rα = rαβ for convenience: 

. 

     This is the equation required for calculating the interionic potential in 

liquid metals and whose the formal expression is: 

       
(78) 

     The interionic potential u(r) consists of two terms. The first one is the 

direct interaction between the ions, udir(r), and the second one the 

interaction induced by the electron gas, uind(r). The latter contribution 

depends explicitly on the bare form factor k + q|w0|k and on the dielectric 

function εH(q) through the energy wave number characteristic F(q). It 

should be noted the great interest introduced by the function F(q) as a 

measure of the induced interaction, uind(r), since uind(r) is nothing else 

than the Fourier transform of the energy wave number characteristic F(q): 

. (79) 

     Some interionic potentials in liquid metals have been portrayed in 

figure (9). It is remarkable that they have attractive wells varying 

significantly from one to another. Moreover, they possess an oscillating 

long-range part, called the Friedel oscillations[30], which is due to the 

logarithmic singularity of the dielectric function at q = 2kF . Concerning 

the repulsive part at short range, it is softer than that of the liquid rare 

gases for which the valence electron shells are completely filled. 

    8     Linear Response: Corrections for Exchange 

and Correlation 

  It has been mentioned that the calculation of the energy of liquid metals 

is done by adding to the configurational energy , the 

term Nug(V,T) depending only on the volume and temperature. By 

consulting the literature [31], [32], [33], it can be seen that Nug(V,T) 

contains, 
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Figure 9: Interionic potential of sodium calculated with different 

pseudopotentials. The repulsive part of the Lennard-Jones potential is 

drawn in thick lines for comparison. 

     In addition to the Fermi energy, the terms coming from the exchange 

and correlation effects in the electron gas. These effects also affect 

significantly the interionic potential by modifying the Hartree dielectric 

function. 

    To introduce the exchange and correlation effects, the response 

function theory is usually used which is an alternative to the screening 

theory [34], [35], [36]. In the following, we present the outlines of this 

theory by looking at how the free electron gas responds when it is 

subjected to the perturbing potential W0 (q) generated by the ions. If W0 

(q) is sufficiently small, the linear response theory states that the 

oscillating part nosc (q) of the induced charge density is linearly related to 

W0 (q) by the relation: 

                                                 nosc(q) = χ(1)(q)W0(q), (80) 

      Where χ (1) (q) is the linear response function of the perturbed system. 

Do not confuse this equation with equation (62) that connects the 

oscillating charge density nosc(q) with the Hartree potential WH(q). 

8.1   Without exchange and correlation effects 

     In that case the total potential W (q) resulting from a hypothetical test 

charge (electronic or non-electronic) is equal to (Eqs. 68 and 69): 

, (81) 

    Where the Hartree potential WH (q) represents the energy of electron-

electron interaction. After replacing WH (q) by its expression taken from 

equation (62), and with the help of equation (80), the previous relation is 

written as: 

(82) 

. (83) 

     This expression is used to link directly the response function χ(1)(q) to 

the Hartree dielectric function εH(q) by the following relation: 

, 

or 

        . (84) 

      It should be noted that, in the general formalism, the linear response 

function χ(1)(q) is related to the static structure factor of the perturbed 

system. Besides, in the case where the perturbed system is a system 

containing pseudoions embedded into the electron gas, the response 

function can be determined within the framework of the theory of the one 

component plasma[37],[38],[39]. 

     By taking advantage of the results of the screening theory and after 

extracting the quantity  from equations (84) and (70), the response 

function χ(1)(q) may be expressed by means of the Lindhard function 

X0(q) as: 

, (85) 

     That permits rewriting equation (80) as: 

. (86) 

     The response function χ(1)(q) is a very important quantity, which 

measures the ability of the free electron gas to respond to a perturbation 

and allows the calculation of the indirect part of the interionic potential, 

uind(r). To show it, we express the energy wave number characteristic (Eq. 

77) in terms of the response function (Eq. 84), namely: 

, (87) 

     And substitute equation (87) in equation (79), so that the contribution 

of the interionic potential, induced by the electron gas, is written in the 

compact form: 

.    (88) 

8.2   With Exchange and Correlation Effects 

     Here the perturbing potential W0 (q) induces an oscillating charge 

density  that differs from nosc (q) and modifies equation (86) as: 

https://www.auctoresonline.org/journals/international-journal-of-materials-science-and-engineering


International Journal of Materials Science and Engineering 
 

 

, (89) 

 Where X0(q) is the Lindhard function and Wmod(q) the modified total 

potential acting on a hypothetical electronic test charge. This potential 

contains, in addition to the terms W0 (q) and 

         , alocal field 

correction , where the local field 

function G(q) exists in different analytical forms[40],[41],[42], which are 

discussed elsewhere[43]. Simply note that they vary with q2 for small 

values of q, and have very different behavior from each other for large 

values of q. 

     It has been established that the local field correction alters equation 

(81) by reducing the screening according to the relation: 

. 

    By using equation (89) to substitute  in the above relation, this 

yields: 

, 

                                    (90) 

    Where the modified dielectric function ε (q) is defined by the 

expression: 

. (91) 

    But, with equation (70), the above relation can also be written in the 

simple form: 

      ε (q) = 1 + εH(q) − 1 [1 − G(q)]. (92) 

    It should be stressed that an ion (hypothetical non-electronic test 

charge) immersed in the electron gas feels the potential W0 (q) + WH (q) 

and not W0 (q) + WH (q) + Wxc(q) . Therefore, in calculating the energy 

wave number characteristic with equation (77), the Hartree dielectric 

function εH(q) must be replaced, not by the dielectric function ε(q), but 

by the new dielectric function εio(q) defined with the following relation, 

similar to equation (82): 

. 

                                                           
 

      To find the expression of εio(q) as a function of εH(q) and G(q), just 

jointly use equations (89) and (90) to replace  in the previous 

relation, that is to say: 

, 

       From which εio(q) may be extracted: 

. 

      Now, if we use equation (91) to eliminate the quantity , 
we obtain the simple relationship: 

. 

      It is thus clear that the dielectric function εio(q) depends on the local 

field function G(q) and the modified dielectric function ε(q), which itself 

depends on G(q) and the Lindhard function X0(q) (Eq. 91). 

     As a result, if the effects of exchange and correlation are taken into 

account, the interionic potential u(r) can be still calculated with the 

energy wave number characteristic F(q), by using equation (78), in which 

the Hartree dielectric function is replaced by the dielectric function εio(q): 

.(93) 

     To end this discussion, note that the interionic potential u(r) can also 

be written as a simple integral over q after a number of changes. The first 

change consists in the introduction of the normalized energy wave 

number characteristic FN (q), equal to unity at q = 0. The latter is 

performed by calculating the limit of equation (93) when q = 0, and by 

noticing that lim 

     q→0 

         εio(q) → ∞ and  

   (Eq. 55). 

It results that 

. 

    The second change is made by reducing the triple integral in equation 

(78) to a simple integral9that modifies u(r) as follows: 

 

    The third change comes from to writing the direct interaction between 

the ions in k-space, before performing the following simplifications10: 
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(94) 

 

, 

  provides a particularly simple relation between u(q) and FN(q), namely: 

. (95) 

   9    Concluding remarks 

     In the rare gas liquids, in which the atoms are characterized by closed 

electronic shells, the interatomic potentials are typified by a strong 

repulsion at short distances, to prevent collapse of the substance, and an 

attractive tail to ensure the cohesion. By contrast, in the normal metals 

where the valence bands are very well separated from the next lowest 

core-level bands, the interionic potentials exhibit a repulsion in the core 

and a long range oscillatory tail generated by the singularity in the 

dielectric function, at the Fermi level. They are expected to be obtainable 

using the pseudopotential and electron screening theories. These 

potentials are typical of simple metallic liquids like the alkali metals and 

most of the polyvalent metals. For noble metals and transition metals of 

3d and 4d series, there are serious impediment in formulating theoretical 

description because of the hybridization between the d-electrons and the 

s-electrons. The same is true for the rare earth liquids due to the strong f-

electron binding. The pseudopotential method has been generalized by 

Harrison[44] to be applied to the transition and noble metals, with more 

or less success. There is another class of elements, which cannot readily 

be treated within the pseudopotential theory, like liquid Te that show 

evidence of chain like structure. They have high resistivity and do not fall 

into the class of simple liquids. 

     Unlike the pair potentials of the rare gases which are independent of 

the volume, those issued from pseudopotential are volume-dependent via 

the wave vector at the Fermi level kF . It is clear from preceding 

discussions that the interionic potentials u(r) in simple liquid metals 

depend on the dielectric function ε(q,kF ), through the normalized energy 

wave number characteristic FN(q). The form of the interionic potential is 

very sensitive to the pseudopotental used and to the approximations in the 

electron screening. As a consequence, the pseudopotential is not a unique 

quantity. The Ashcroft model has proved of great value to bring out the 

basic ideas of the pseudopotential theory, but it sometimes fails because 

of its oversimplified form. The accuracy of any calculation of reliable 

interionic potential may be improved by using pseudopotentials spatially 

non-local, for which the form factor depends not only on q but also on the 

wave vector k. 

    Once the form factor k + q|w0|k and the dielectric function ε(q,kF) are 

known, the interionic potential may be calculated via Eq. (78), with the 

intention of determining a variety of structural and thermodynamic 

properties. To test an interionic potential u(r), theories often attempt to 

link u(r) to the structure factor S(q) directly accessible to measurement 

by X-ray diffusion or neutron scattering. Another basic achievement of 

the pseudopotential theory has been to underline the proposition that the 

form factor k + q|w0|k and the dielectric function ε(q,kF ) are capable of 

predicting the electron transport properties of pure liquid metals[45]. 

     As already mentioned, the presence of the electron gas makes that the 

potential energy function consists of a sum of interionic potentials plus a 

volume-dependent term (whereas structureindependent) playing a 

dominant role in determining the thermodynamic properties, but quite 

difficult to evaluate properly. Thus, there is a number of liquids for which 
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the use of pseudopotentials is wholly inappropriate, and problems still 

remain not fully resolved in the thermodynamics of metallic liquids, 

among them the metal-nonmetal transition in expanded liquid metals, 

especially along the liquid-vapor coexistence curve. Even for small 

expansion, failure will set in when the critical point is 

approached[46],[19],[47]. Furthermore, the transition across the interface 

from metallic behavior in the bulk liquid to insulating behavior in the 

coexisting vapor has been investigated[48],[49] by the theory of the 

surface tension of insulating liquids[50],[51]. 

    Another problem of great interest is the transferability of a 

pseudopotential from the solid state to the liquid state with the same 

values of parameters. Of course, to increase our confidence in such a 

pseudopotential it is worthwhile to demonstrate how well many different 

physical properties of the liquid are predicted with it. Good results have 

been obtained with the Fiolhais et al.[52] structured pseudopotential, 

whose the parameters are designed for the solid state, specially for the 

alkali metals [53],[54]. This pseudopotential is based on first principle 

arguments and does not represent an attempt to obtain agreement with 

experiment at all costs. The structure factor and isothermal 

compressibility of the divalent liquid metals are quite well 

reproduced[55]. Though reasonable results have been also obtained for 

the structural properties of the polyvalent metals, it appears that the 

melting point is largely overestimated[56]. 

    Today the pseudopotential theory is supplanted by the density 

functional theory (DFT) established itself to compute the electronic 

structure in most branches of chemistry and materials science. In the 

formulation given by Kohn and coworkers[57],[58] the many-electron 

wave function is replaced by the electron density, so that the energy is 

just a functional of the latter. The DFT is applied, with low computational 

cost and reasonable accuracy, to predict diverse properties as binding or 

atomization energies, shapes and sizes of molecules, crystal structures of 

solids, energy barriers to various processes, etc. In the mid 1980s, it 

became an appreciable alternative to the well developed wave function 

techniques such as the Hartree-Fock one, when crucial developments in 

exchange-correlation energy have been taken into account[43]. 

     DFT is a powerful tool to investigate the static properties of electronic 

systems. It is also a convenient tool to be used in conjunction with ab 

initio molecular dynamics (AIMD) simulations for extended systems[59]. 

Whereas classic MD describes trajectories of atoms as objects within an 

empirical interaction potential, the AIMD computations are simulations 

involving the motions of both nuclei and electrons. The evolution of the 

kinetic energies of both electrons and nuclei is observed in an identical 

way through the use of fictitious masses. Plane waves are usually used 

for the description of valence orbitals, whereas pseudopotential 

approximations are employed for taking into account the core electrons. 

The combination of quantum mechanics and molecular mechanics in 

AIMD is certainly one of the most promising theoretical tools available 

for theoretical chemistry. Its implementation for ab initio molecular 

dynamics simulation of large systems has also been successfully applied 

to solid state and liquid state physics, as well as to materials science. 
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