Fractional Integration Operators in Mixed Weighted Generalized Hölder Spaces of Function of Two Variables Defined By Mixed Modulus of Continuity

T. Mamadov
Department of Higher mathematics, Bukhara Technological Institute of Engineering, Bukhara, Uzbekistan

Corresponding Author: T. Mamadov, Department of Higher mathematics, Bukhara Technological Institute of Engineering, Bukhara, Uzbekistan, E-Mail: mamadov.tulkin@mail.ru

Received date: October 16, 2019; Accepted date: October 23, 2019; Published date: October 30, 2019

Copyright: © 2019 T. Mamadov. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

In the presented work for operators the mixed fractional integration character of improvement of smoothness in comparison with smoothness of density \(\varphi(x, y) \) with weight \(\rho(x, y) \) in case of its any continuity modulus is found out \(\alpha(\rho \varphi, x, y) \). Zygmund type estimates are received. We consider operators of mixed fractional integration in weighted generalized Hölder spaces of a function of two variables defined by a mixed modulus of continuity.

Keywords: function of two variable, mixed fractional integral, mixed difference, generalized hölder space, weighted space, weight, and mixed modulus of continuity

1. Introduction

One of the most important problems in the theory of integral operators in space is the problem of elucidating the dependence of the smoothness of the image on the smoothness of the preimage. The solution to such a problem plays an important role in the solvability of integral equations, their stability, and so on. The concept of smoothness can be formulated in a variety of terms. One of the ways of sufficiently fine-grabbing the smoothness of functions is the notion of generalized Hölderness, formulated in terms of the behavior of the modulus of continuity. Thus, one of the important questions in the theory of operators is as follows: Let be an operator acting in a Banach space \(X \) and let be the modulus of continuity \(\omega(f; h) = \sup_{|x| \leq h} |f(x + h) - f(x)|_X \) of \(X \). How can the behavior of the modulus of continuity be characterized \(\alpha(A \varphi, h) \) if the behavior of the modulus of continuity of function \(\omega(\varphi; h) : \omega(\varphi; h) \leq C\varphi(h) \) for all is known \(\varphi \in X \), where is a given continuous function. \(\varphi(0) = 0 \). This problem admits a natural generalization to the weight case namely, let \(\rho(x) \) - weight function and \(\omega(\rho \varphi, h) \leq C\varphi(h) \) for all \(\varphi \in X \). How to estimate the modulus of continuity \(\omega(\rho A \varphi, h) \)? A similar problem can be considered completely solved for different spaces, and also for the Hölder space of functions of one variable and power weights, when

\[
(A^\alpha \rho)(t) = \frac{1}{\Gamma(\alpha)} \int_0^t \rho(t) (\frac{t}{r})^{\alpha-1} dt, \quad 0 < \alpha < 1
\]

A detailed review of these and some other close results can be found in [12].

The assertion for multidimensional cases on the property of mapping in the usual Hölder and in the Hölder spaces defined by mixed differences are known [7], [8], [9], [10], [11], [12].

A similar problem in generalized Hölder spaces of the function of several variables has not been studied. This paper is aimed to fill in this gap. We deal with both non-weighted and weighted spaces. An important stage in the study of fractional integro-differentiation of functions from generalized Hölder spaces (see [1] - [6], [13], [14], [18]) is obtaining estimates of Zygmund type; Estimate of the modulus of continuity of a fractional integral in terms of the modulus of continuity of the original function.

The main thrust of the work is to obtain an estimate of the Zygmund type that majorizes the mixed modulus \(\alpha(\rho \psi, h, \eta) \) of continuity of a mixed fractional integral with the weight of integral constructions from the mixed modulus of continuity \(\alpha(\varphi; h, \eta) \) of its density \(\varphi(x, y) \) with weight \(\rho(x, y) \). These Zygmund-type estimates and action theorems directly affect the character of the improvement of the modulus of continuity by a mixed fractional integration \(I_n^{\alpha, \beta} \rho \) of order \((\alpha, \beta)\).
It should be emphasized that the presence of weight significantly affects the nature of the Zygmund type evaluation. This was known in the case of Zygmund type estimates for fractional integrals of functions of one variable.

This paper is devoted to the study of certain properties of the mixed fractional integral (1) in weighed generalized Hölder spaces of a function of two variables defined by mixed modulus of continuity.

We consider the operator (1) in \(Q = \{(x, y) : 0 < x < b, 0 < y < d\} \).

2. Preliminary information and notations

When studying the properties of continuous functions of several variables, in particular, two variables, the following classes of functions arise:

\[
H^{\alpha_1, \alpha_2, \alpha_3} = \left\{ \varphi(x, y) \in C_{Q} : \omega(\varphi; \delta, 0) = O(\omega_1(\delta)), \omega(\varphi, \sigma) = O(\omega_2(\sigma)) \right\},
\]

\[
H^{\alpha_2} = \left\{ \varphi(x, y) \in C_{Q} : \omega(\varphi; \delta, 0) = O(\omega_1(\delta)), \omega(\varphi, \sigma) = O(\omega_2(\sigma)) \right\},
\]

where \(\omega(\varphi; \delta, 0) = \sup_{y \in \delta} \left\| \varphi(x + h, y) - \varphi(x, y) \right\| \) and \(\omega(\varphi, \sigma) = \sup_{y \in \sigma} \left\| \varphi(x + h, y + \eta) - \varphi(x, y + \eta) \right\| \) - are the partial moduli of continuity of the first order, and \(\omega(\varphi; \delta, \sigma) = \sup_{x, y} \left\| \Delta_{\varphi}(x, y) \right\| \) is mixed modulus of continuity of order \((1, 1) \):

\[
\left(\Delta_{\varphi}(x, y) = \varphi(x + h, y) - \varphi(x, y), \left(\Delta_{\varphi}(x, y) = \varphi(x, y + \eta) - \varphi(x, y) \right), \left(\Delta_{\varphi}(x, y) = \varphi(x + h, y + \eta) - \varphi(x + h, y) - \varphi(x, y + \eta) + \varphi(x, y) \right), \omega_1, \omega_2 \in \Phi^1, \omega_1, \omega_2 \in \Phi^{1,1} \right. \]

(Definition of classes \(\Phi^1 \) and \(\Phi^{1,1} \) see below).

The following identity is valid

\[
\varphi(x + h, y + \eta) = \left(\Delta_{\varphi}(x, y) \right) + \left(\Delta_{\varphi}(x, y) \right) + \left(\Delta_{\varphi}(x, y) \right) + \varphi(x, y).
\]

\[
\text{ Definition 1. } \text{Let function } \varphi(x) \text{ is a bounded on } [a, b]. \text{ The modulus of continuity of } \varphi(x) \text{ is the expression }
\]

\[
\omega(\varphi; \delta) = \sup_{x_1, x_2 \in [a, b]} \left\| \varphi(x_1) - \varphi(x_2) \right\|,
\]

is defined for all \(\delta \) that satisfy the condition \(0 < \delta \leq b - a \).

\[
\text{ Definition 2. } \text{A function } \omega(\delta) \text{ is called a modulus of continuity if it satisfies conditions }
\]

\[
\lim_{\delta \to 0} \omega(\delta) = 0;
\]

\[
\omega(\delta) \text{ is almost increasing on } (0, b - a];
\]

\[
\omega(\delta_1 + \delta_2) \leq \omega(\delta_1) + \omega(\delta_2);
\]

\[
\omega(\delta) \text{ is function continuous in } \delta \text{ on } (0, b - a].
\]
Definition 3. We denote by Φ^1 the class of functions $\omega(\delta)$ defined on $(0, b - a]$ and satisfying conditions:

a) $\omega(\delta)$ is a modulus of continuity.

b) $\int_0^\delta \frac{\omega(t)}{t} dt \leq C\omega(\delta)$.

c) $\delta \int_0^{b - \delta} \frac{\omega(t)}{t^2} dt \leq C\omega(\delta)$.

d) $\omega'(\delta) \sim \frac{\omega(\delta)}{\delta}$.

It follows from the definition $\omega(\varphi, \delta, \sigma)$ that this function belongs to $\Phi^1(Q)$ each of the variables. In addition, we note the inequality

$$\omega(\varphi, \delta, \sigma) \leq 2\min\left\{1, 0, 0, 1, 0, 1\right\}.$$ \hspace{1cm} (3)

Definition 4. We denote by $\Phi^{1,1}(Q)$ the class of functions of two variables $\omega(\delta, \sigma)$ satisfying conditions:

1) $\omega(\delta, \sigma)$ in δ for any fixed σ;

2) $\omega(\delta, \sigma)$ in σ for any fixed δ.

We call this class the class of mixed modulus of continuity of the first order of continuous functions of two variables. In [1] was shown that the properties 1) and 2) are characteristic for continuity modulus in the sense that for every $\omega \in \Phi^{1,1}(Q)$ there exist such a function $\varphi \in C_Q$ that

$$\omega(\varphi, \delta, \sigma) \sim \omega_{a,1}(\delta, \sigma), \omega(\varphi, \delta, 0) \sim \omega_1(\delta), \omega(\varphi, 0, \sigma) \sim \omega_2(\sigma).$$

Definition 5. Let us denote $\Phi(Q)$ the set of satisfying $(\omega_{a,1}, \omega_1, \omega_2)$

1) $\omega_1(\delta), \omega_2(\sigma) \in \Phi^1$;

2) $\omega_{a,1}(\delta, \sigma) \in \Phi^{1,1}$;

3) $\omega_{a,1}(\delta, \sigma) \leq C\min\{\omega_1(\delta), \omega_2(\sigma)\}$.

Where C is not envy from $\omega_1, \omega_2, \omega_{a,1}$.

Let $\omega = (\omega_1, \omega_2, \omega_{a,1}) \in \Phi = \Phi^1 \times \Phi^1 \times \Phi^{1,1}$. We have introduced a norm in $H^{1,0} = H^{(1,0,0,1)}$ space

$$\|\omega\|_{H^{1,0}} = \max\left\{\|\varphi\|_{C_Q}, C_{\varphi}^{1,0}, C_{\varphi}^{0,1}, C_{\varphi}^{1,1}\right\}.$$

Where

$$C_{\varphi}^{1,0} = \sup_{\delta > 0} \frac{\omega_1(\varphi; \delta, 0)}{\omega_1(\delta)}, \quad C_{\varphi}^{0,1} = \sup_{\sigma > 0} \frac{\omega_2(\varphi; 0, \sigma)}{\omega_2(\sigma)}, \quad C_{\varphi}^{1,1} = \sup_{\delta, \sigma > 0} \frac{\omega_{a,1}(\varphi; \delta, \sigma)}{\omega_{a,1}(\delta, \sigma)}.$$

Definition 6. We say that $\varphi(x, y) \in H^{1,0}(Q)$, if $\varphi(x, y) \in H^{1,0}(Q)$ and $\varphi(x, y)_{x=0, y=0} = \varphi(x, y)_{x=b, y=d} = 0$.

We will also make use of the following weighted spaces. Let $\rho(x, y)$ be a non-negative function on Q (we will only deal with degenerate weights $\rho(x, y) = \rho(x)\rho(y)$).

Definition 7. By $\tilde{H}^{1,0}(Q, \rho) = \tilde{H}^{1,0}(\rho)$ we denote the space of functions $\varphi(x, y)$ such that $\rho\varphi \in \tilde{H}^{1,0}$, respectively, equipped with the norm.
\[\| \varphi \|_{H^\alpha(p)} = \| \rho \varphi \|_{H^\alpha}. \]

By \(\tilde{H}^\alpha_0(\rho) \) we denote the corresponding subspaces of functions \(\varphi(x, y) \) such that
\[\rho(x, y)\varphi(x, y) \rvert_{x=0, y=0} = \rho(x, y)\varphi(x, y) \rvert_{x=b, y=d} = 0. \]

Below we follow some technical estimations suggested in [3] for the case of one-dimensional Riemann - Liouville fractional integrals. We denote
\[B(x, y; t, \tau) = \frac{\rho(x, y) - \rho(t, \tau)}{\rho(t, \tau)(x-t)^{1-\alpha} (y-\tau)^{1-\beta}}, \]
where \(0 < \alpha, \beta < 1, \quad 0 < t < x < b, \quad 0 < \tau < y < d \). In the case \(\rho(x, y) = \rho(x) \rho(y) \) we have
\[B(x, y; t, \tau) = B_1(x, t)B_2(y, \tau) + \frac{B_1(x, t)}{(y-\tau)^{1-\beta}} + \frac{B_2(y, \tau)}{(x-t)^{1-\alpha}}, \]
where
\[B_1(x, t) = \frac{\rho(x) - \rho(t)}{\rho(t)(x-t)^{1-\alpha}}, \quad B_2(y, \tau) = \frac{\rho(y) - \rho(\tau)}{\rho(\tau)(y-\tau)^{1-\beta}}. \]

Let also
\[D_1(x, h, t) = B_1(x+h, t) - B_1(x, t), \quad t, x, x+h \in [0,b], \quad h > 0 \]
\[D_2(y, \eta, \tau) = B_2(y+\eta, \tau) - B_2(y, \tau), \quad \tau, y, y+\eta \in [0,d], \quad \eta > 0. \]

Lemma 1. (3.3) Let \(\rho(x) = x^\mu, \mu \in \mathbb{R}, 0 < \alpha < 1 \). Then
\[|B_1(x, t)| \leq C \left(\frac{x}{t} \right)^{\max(\mu-1, 0)} \frac{(x-t)^\alpha}{t}, \]
\[|D_1(x, h, t)| \leq C \left(\frac{x+h}{t} \right)^{\max(\mu-1, 0)} \frac{h}{(x+h-t)^{1-\alpha} t}. \]

Similar estimates hold for \(B_2(y, \tau) \) and \(D_2(y, \eta, \tau) \) with \(\rho(y) = y^\nu \).

Remark 1. All the weighted estimations of fractional integrals in the sequel are based on inequalities (5)-(4). Note that the right-hand sides of these inequalities have the exponent \(\max(\mu-1, 0) \), which means that in the proof it suffices to consider only the case \(\mu \geq 1 \), evaluations of \(\mu < 1 \) being the same as for \(\mu = 1 \).

The following statements are known, begin first proved in (see also [17], p. 197). However, here we give a sketch of the proof of this lemma, in order to compose the representation of lightness for the two-dimensional case. Consider the one-dimensional fractional Riemann-Liouville integral
\[(I_0^\alpha \varphi)(x) = \frac{1}{\Gamma(\alpha)} \int_0^x \frac{\varphi(t)}{(x-t)^{1-\alpha}} dt, \quad x > 0, 0 < \alpha < 1, \]
(7)

Theorem 1. Let \(\varphi(x) \) be continuous on \([0,b]\) and \(\varphi(0) = 0 \). For the fractional integral (7), the estimate
\[\omega \left(I_0^\alpha \varphi, h \right) \leq Ch \int_0^h \frac{\alpha(\varphi, \tau)}{t^{2-\alpha}} dt \]
(8)
Is valid.

Proof. Representing (7) as
\[(I_0^\alpha \varphi)(x) = \frac{1}{\Gamma(\alpha)} \int_0^x \frac{\varphi(t)}{(x-t)^{1-\alpha}} dt - \frac{1}{\Gamma(\alpha)} \int_0^x \frac{\varphi(t)-\varphi(0)}{(x-t)^{1-\alpha}} dt = A_1(x) + A_2(x). \]
Let \(h > 0, \ x, x+h \in [0,b] \). We have
\[A_2(x + h) - A_2(x) = \frac{\varphi(x) - \varphi(0)}{\Gamma(1 + \alpha)} [(x + h)^\alpha - x^\alpha] + \frac{1}{\Gamma(\alpha)} \int_0^h [(\varphi(x + t) - \varphi(t)) (h - t)^{-\alpha}] dt + \frac{1}{\Gamma(\alpha)} \int_0^h [(\varphi(x - t) - \varphi(t)) (h + t)^{\alpha-1} - t^{\alpha-1}] dt = \Delta_1 + \Delta_2 + \Delta_3. \]

We have: \(|\Delta_1| \leq C\alpha(\varphi, x)(x + h)^\alpha - x^\alpha \). In the case \(x \leq h \) we have \(|\Delta_1| \leq Ch^\alpha \alpha(\varphi, h) \). Let \(x \geq h \). Then

\[|\Delta_1| \leq C\alpha(\varphi, x)x^\alpha \left[\left(1 + \frac{h}{x}\right)^\alpha - 1 \right] \leq C \frac{\alpha(\varphi, x)}{x^{1-\alpha}} h. \] (9)

Since

\[Cx^{\alpha-1} \alpha(\varphi, x) \leq \alpha(\varphi, x) h\] \(\frac{h}{\alpha} \int_0^h t^{\alpha-2} dt \leq \int_0^h \frac{\alpha(\varphi, t)}{t^{\alpha-2}} dt \leq \int_0^h \frac{\alpha(\varphi, t)}{t^{\alpha-2}} dt. \]

It follows from (9) that

\[|\Delta_1| \leq Ch^\alpha \int_0^h \frac{\alpha(\varphi, t)}{t^{\alpha-2}} dt. \]

Further

\[|\Delta_2| \leq \int_0^h \frac{\alpha(\varphi, t)}{(h - t)^{\alpha}} dt = h^{\alpha} \int_0^h \frac{\alpha(\varphi, h\xi)}{(1 - \xi)^{\alpha}} d\xi \leq Ch^\alpha \alpha(\varphi, h). \]

With \(C = \int_0^1 (1 - \xi)^{\alpha-1} d\xi \).

To estimate \(\Delta_3 \), we distinguish the case 1) \(x \geq h \) and 2) \(x \leq h \). In the first case

\[|\Delta_3| \leq C \left[\int_0^h \frac{\alpha(\varphi, t)}{t^{\alpha-1} - (h + t)^{\alpha-1}} dt + \int_h^0 \frac{\alpha(\varphi, t)}{t^{\alpha-1} - (h + t)^{\alpha-1}} dt \right] \leq \]

\[\leq C \left[h^{\alpha} \alpha(\varphi, h) + h \frac{\alpha(\varphi, t)}{t^{\alpha-2}} dt \right]. \]

Obviously in the second case \(|\Delta_3| \leq C h^{\alpha} \alpha(\varphi, h) \).

Estimates for \(\Delta_1, \Delta_2, \Delta_3 \) lead to (8) if we take into account the fact that \(h^{\alpha} \alpha(\varphi, h) \) is dominated by the right-hand side of (8). The latter is easily obtained in view of the monotonicity of the function \(\alpha(\varphi, t) \).

To obtain estimates of the Zygmund type in the weighted case, we use the notation and the proof scheme from [2] and [6].

Theorem 2. Let \(\rho(x) = x^{\mu}, 0 \leq \mu < 2 - \alpha \). If the function \(f(x), x \in [a, b] \) satisfies the condition:

1) \(\rho(x)f(x)|_{x=0} = 0 \);

2) the integral \(\int_0^h \frac{\rho f(t)}{t^\gamma} dt \) converges for \(\gamma = \max(1, \mu) \).

Then estimates of the Zygmund type

\[\alpha(\rho I_0^\alpha f, h) \leq C \left(h^{\alpha+\gamma-1} \int_0^h \frac{\rho f(t)}{t^\gamma} dt + h \frac{\rho f(t)}{t^{\alpha-2}} dt \right). \] (10)

Proof. We denote this \(g(x) = \rho(x)f(x) \). We have

\[(\rho I_0^\alpha f)(x) = (I_0^\alpha g)(x) + (J_0^\alpha g)(x), \quad (J_0^\alpha g)(x) = \frac{1}{\Gamma(\alpha)} \int_0^x B(x, t) g(t) dt. \]
Here the estimates \((I_{0+}^a g)(x) \) are solved in Theorem 1. Now consider the difference where
\[
(J_{0+}^a g)(x + h) - (J_{0+}^a g)(x) = F_1(x, h) + F_2(x, h),
\]
where
\[
F_1(x, h) = \int_{x}^{x+h} B_1(x + h, t) g(t) \, dt, \quad F_2(x, h) = \int_{0}^{h} D(x, h, t) g(t) \, dt.
\]
Taking into account Remark 1, we consider only the case \(1 \leq \mu < 2 - \alpha \). From (5) we have
\[
|F_1| \leq C \int_{x}^{x+h} \frac{(x + h - t)^{\mu - 1}}{t^\mu} \omega(g; t) \, dt \leq C \int_{x}^{x+h} \frac{(x + h - t)^{\mu - 1}}{t^\mu} \omega(g, t) \, dt.
\]
If \(x \leq h \), then
\[
|F_1| \leq Ch^\mu \int_{x}^{x+h} \frac{\omega(g; t)}{t^\mu} \, dt.
\]
Using the property of almost decreasing \(\frac{\omega(g; t)}{t} \), we obtain
\[
|F_1| \leq Ch^\mu \int_{x}^{x+h} \frac{\omega(g; t - x)}{(t - x)^\mu} \, dt = Ch^\mu \int_{0}^{h} \frac{\omega(g; t)}{t^\mu} \, dt.
\]
If \(x > h \), then
\[
|F_1| \leq Ch^\mu (x + h)^{\mu - 1} \int_{0}^{h} \frac{\omega(g; x - t)}{(x - t)^\mu} \, dt \leq Ch^\mu \int_{0}^{h} \frac{\omega(g; x + t)}{(x + t)^\mu} \, dt \leq Ch^\mu \int_{0}^{h} \omega(g; x + t) \, dt.
\]
Further, it is clear that
\[
|F_1| \leq Ch^\mu \int_{0}^{h} \frac{\omega(g; t)}{t^\mu} \, dt.
\]
Collecting the estimates \(F_1 \), we obtain the inequality for \(0 \leq \mu < 2 - \alpha \)
\[
|F_1| \leq Ch^\mu \int_{0}^{h} \frac{\omega(g; t)}{t^\mu} \, dt, \quad \gamma = \max(1, \mu).
\]
We pass to the estimate \(F_2 \). Using the estimate (6), we obtain
\[
|F_2| \leq Ch \int_{x}^{x+h} \frac{\omega(g; t)}{(x + h - t)^{\alpha - \mu} t^{\mu - 1}} \, dt.
\]
When \(h \geq x \),
\[
|F_2| \leq Ch^\mu \int_{0}^{h} \frac{\omega(g; t)}{t^\mu} \, dt \leq Ch^\mu \int_{0}^{h} \frac{\omega(g; t)}{t^\mu} \, dt.
\]
If \(h < x \), then, we represent the right-hand side of (11) as a sum of three terms:
\[
|F_2| \leq Ch \left[\int_{0}^{h} + \int_{h}^{\frac{x + h}{2}} + \int_{\frac{x + h}{2}}^{x+h} \right] \frac{\omega(g; t)}{(x + h - t)^{\alpha - \mu} t^{\mu - 1}} \, dt = F_2' + F_2'' + F_2'''.
\]
For the term \(F_2' \), the relations are valid \(x + h \leq 2(x + h - t) \), therefore
\[
F_2' \leq Ch \int_{0}^{h} \frac{\omega(g; t) dt}{t^{\mu (x + h - t)^{\gamma - \mu}}} \leq Ch^\mu \int_{0}^{h} \frac{\omega(g; t)}{t^\mu} \, dt.
\]
For the summand, F''_2 we have $2t \leq x + h$, so $1 \leq \mu < 2 - \alpha$ we obtain the estimate

$$F''_2 \leq Ch \int_0^{1 \over 2(x+h)} \frac{\omega(g; t)(x + h)\mu-1}{t^\mu \left(x + h - \frac{x + h}{2}\right)^{1-\alpha}} dt \leq Ch \frac{\omega(g; t)}{t^{2-\alpha}} dt.$$

We estimate the term F'''_2. Here $t \geq x + h - t$ therefore

$$\frac{\omega(g; t)}{t \cdot (x + h - t)^{1-\alpha}} \leq Ch \frac{\omega(g; x + h - t)}{(x + h - t)^{2-\alpha}} dt.$$

Because $x + h \leq 2t$. Having made the change $\xi = x + h - t$ and going back to the variable t, we get

$$F'''_2 \leq Ch \int_0^{h} \frac{\omega(g; t)}{t^{2-\alpha}} dt.$$

From the estimates F'_2, F''_2, F'''_2 follows when $h < x$

$$| F_2 | \leq C \left(h^{\mu+\alpha-1} \int_0^{h} \frac{\omega(g; t)}{t^\mu} dt + h \int_0^{h} \frac{\omega(g; t)}{t^{2-\alpha}} dt \right).$$

Thus, when $0 \leq \mu < 2 - \alpha$

$$| F_2 | \leq C \left(h^{\gamma+\alpha-1} \int_0^{h} \frac{\omega(g; t)}{t^\mu} dt + h \int_0^{h} \frac{\omega(g; t)}{t^{2-\alpha}} dt \right), \quad \gamma = \max(1,\mu),$$

Which completes the proof.

Zygmund type estimates for the mixed fractional integral

Theorem 3. Let $\varphi \in C(Q)$ and $\varphi(x, y)|_{x=0, y=0} = 0$. Then for (1), we have estimates of the Zygmund type

$$1,1 \quad \omega(f; h, \eta) \leq C_1 \left(h \int_0^{h} \frac{\omega(\varphi; t, \tau)}{\tau^{2-\beta}} d\tau \right).$$

$$1,0 \quad \omega(f; h, 0) \leq C_2 \left(h \int_0^{h} \frac{\omega(\varphi; t, 0)}{t^{2-\alpha}} dt \right), \quad \omega(f; 0, \eta) \leq C_3 \left(\eta \int_0^{\eta} \frac{\omega(\varphi; 0, \tau)}{\tau^{2-\beta}} d\tau \right).$$

Proof. Using the identity (2), we represent the integral (1) in the form

$$(I_{0+}^{\alpha, \beta}) \varphi(x, y) = \frac{\varphi(0,0)}{\Gamma(1+\alpha)\Gamma(1+\beta)} + \frac{x^\alpha}{\Gamma(1+\alpha)} \psi_2(y) + \frac{y^\beta}{\Gamma(1+\beta)} \psi_1(x) + \psi(x, y).$$

Where

$$\psi_1(x) = \frac{1}{\Gamma(\alpha)} \int_0^{x} \frac{\varphi(t, 0) - \varphi(0, 0)}{(x-t)^{1-\alpha}} dt,$$

$$\psi_2(y) = \frac{1}{\Gamma(\beta)} \int_0^{y} \frac{\varphi(0, \tau) - \varphi(0, 0)}{(y-\tau)^{1-\beta}} d\tau,$$

$$\psi(x, y) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_0^{x} \int_0^{y} \frac{(\Delta_{x+\beta}) \varphi(0,0)}{(x-t)^{1-\alpha}(y-\tau)^{1-\beta}} d\tau dt.$$

Let $h > 0; x, x + h \in [0, b]$. Consider the difference
\[
\left(\Delta_{b} f \right)(x, y) = \left(x + h \right)^{\alpha} - x^{\alpha} \int_{0}^{1} g(x, y - \tau) d\tau + \frac{1}{\Gamma(\alpha)} \int_{0}^{1} \int_{0}^{h} g(x - t, y - \tau) - g(x, y - \tau) dtd\tau + \frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{0}^{1} \int_{0}^{h} g(x - t, y - \tau) - g(x, y - \tau) \left(t + h \right)^{\beta - 1} \left(t - \tau \right)^{i - \beta - 1} dtd\tau.
\]

The following inequality is valid
\[
\left| \left(\Delta_{b} f \right)(x, y) \right| \leq C \left| \left(x + h \right)^{\alpha} - x^{\alpha} \right| \int_{0}^{1} \frac{\alpha(t, x, y - \tau)}{\tau^{i - \beta}} d\tau + \int_{0}^{1} \frac{\alpha(t, x, y)}{\left(t + h \right)^{i - \alpha}} dtd\tau + \int_{0}^{1} \frac{\alpha(t, x, y - \tau)}{\left(h + t \right)^{\alpha - 1} - \left(t - \tau \right)^{\alpha - 1}} |dtd\tau|.
\]

We make use of (3) and obtain
\[
\left| \left(\Delta_{b} f \right)(x, y) \right| \leq C_{1} \left| \left(x + h \right)^{\alpha} - x^{\alpha} \right| \int_{0}^{1} \frac{\alpha(t, x, y - \tau)}{\tau^{i - \beta}} d\tau + \int_{0}^{1} \frac{\alpha(t, x, y)\left(h + t \right)^{\alpha - 1} - \left(t - \tau \right)^{\alpha - 1}}{\left(h + t \right)^{i - \alpha}} dtd\tau.
\]

Using the estimates \(\Delta_{1}, \Delta_{2}, \Delta_{3} \) in the proof of Theorem 1, it is easy to obtain
\[
\left| \left(\Delta_{b} f \right)(x, y) \right| \leq C_{2} h \int_{0}^{1} \frac{\alpha(t, x, y)}{t^{i - \alpha}} dtd\tau.
\]

Similarly, we can obtain the estimate
\[
\left| \left(\Delta_{b} f \right)(x, y) \right| \leq C_{2} \int_{0}^{1} \frac{\alpha(t, x, y)}{t^{i - \alpha}} dtd\tau.
\]

From (14) and (15) follows the inequalities (13).

Let \(h, \eta > 0 \) and \(x, x + h \in [0, b] \); \(y, y + \eta \in [0, d] \). Consider the difference
\[
\left(\Delta_{b, h} f \right)(x, y) = \left(\Delta_{b, h} \psi \right)(x, y) = \sum_{k=1}^{9} T_{k} :=
\]

\[
+ \frac{(x + y) - y^{\beta}}{\Gamma(1 + \alpha) \Gamma(1 + \beta)} \int_{0}^{h} \frac{g(x + t, y) - g(x, y)}{(h - t)^{\alpha}} dt + \frac{(x + y^{\beta} - x^{\beta})}{\Gamma(1 + 1 + \alpha) \Gamma(1 + \beta)} \int_{0}^{h} \frac{g(x + y^{\beta} - x^{\beta})}{h^{\alpha}} - g(x, y) \left(\eta + t \right)^{\beta} - \left(t - \tau \right)^{\beta} dtd\tau +
\]

\[
+ \frac{(x + y^{\beta} - y^{\beta})}{\Gamma(1 + \alpha) \Gamma(1 + \beta)} \int_{0}^{h} \frac{g(x + t, y) - g(x, y)}{(h - t)^{\alpha}} dt + \frac{(x + y^{\beta} - x^{\beta})}{\Gamma(1 + 1 + \alpha) \Gamma(1 + \beta)} \int_{0}^{h} \frac{g(x + y^{\beta} - x^{\beta})}{h^{\alpha}} - g(x, y) \left(\eta + t \right)^{\beta} - \left(t - \tau \right)^{\beta} dtd\tau +
\]

\[
+ \frac{(x + h^{\beta} - x^{\beta})}{\Gamma(1 + \alpha) \Gamma(1 + \beta)} \int_{0}^{h} \frac{g(x + t, y) - g(x, y)}{(h - t)^{\alpha}} dt + \frac{(x + h^{\beta} - x^{\beta})}{\Gamma(1 + 1 + \alpha) \Gamma(1 + \beta)} \int_{0}^{h} \frac{g(x + h^{\beta} - x^{\beta})}{h^{\alpha}} - g(x, y) \left(\eta + t \right)^{\beta} - \left(t - \tau \right)^{\beta} dtd\tau +
\]

\[
+ \frac{(x + h^{\beta} - x^{\beta})}{\Gamma(1 + \alpha) \Gamma(1 + \beta)} \int_{0}^{h} \frac{g(x + t, y) - g(x, y)}{(h - t)^{\alpha}} dt + \frac{(x + h^{\beta} - x^{\beta})}{\Gamma(1 + 1 + \alpha) \Gamma(1 + \beta)} \int_{0}^{h} \frac{g(x + h^{\beta} - x^{\beta})}{h^{\alpha}} - g(x, y) \left(\eta + t \right)^{\beta} - \left(t - \tau \right)^{\beta} dtd\tau +
\]

\[
+ \frac{(x + h^{\beta} - x^{\beta})}{\Gamma(1 + \alpha) \Gamma(1 + \beta)} \int_{0}^{h} \frac{g(x + t, y) - g(x, y)}{(h - t)^{\alpha}} dt + \frac{(x + h^{\beta} - x^{\beta})}{\Gamma(1 + 1 + \alpha) \Gamma(1 + \beta)} \int_{0}^{h} \frac{g(x + h^{\beta} - x^{\beta})}{h^{\alpha}} - g(x, y) \left(\eta + t \right)^{\beta} - \left(t - \tau \right)^{\beta} dtd\tau +
\]

\[
+ \frac{(x + h^{\beta} - x^{\beta})}{\Gamma(1 + \alpha) \Gamma(1 + \beta)} \int_{0}^{h} \frac{g(x + t, y) - g(x, y)}{(h - t)^{\alpha}} dt + \frac{(x + h^{\beta} - x^{\beta})}{\Gamma(1 + 1 + \alpha) \Gamma(1 + \beta)} \int_{0}^{h} \frac{g(x + h^{\beta} - x^{\beta})}{h^{\alpha}} - g(x, y) \left(\eta + t \right)^{\beta} - \left(t - \tau \right)^{\beta} dtd\tau +
\]
\[
+ \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_0^h \int_0^1 \left(\Delta_{t, \tau} g \right) \left(x, y \right) \left(h - t \right)^{-\alpha} \left(\eta - \tau \right)^{-\beta} dt d\tau +
\]
\[
+ \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_0^h \int_0^1 \left(\Delta_{t, -\tau} g \right) \left(x, y \right) \left(\tau + \eta \right)^{\beta - 1} - \left(\tau - \eta \right)^{\beta - 1} dt d\tau +
\]
\[
+ \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_0^h \int_0^1 \left(\Delta_{\tau, t} g \right) \left(x, y \right) \left(h + t \right)^{\beta - 1} - \left(h - t \right)^{\beta - 1} dt d\tau +
\]
\[
+ \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_0^1 \int_0^1 \left(\Delta_{t, -\tau} g \right) \left(x, y \right) \left(t + h \right)^{\beta - 1} - \left(t - h \right)^{\beta - 1} \int \left(\tau + \eta \right)^{\beta - 1} - \left(\tau - \eta \right)^{\beta - 1} d\tau dt.
\]

The inequality is valid
\[
\left| \left(\Delta_{h, \eta} f \right) \left(x, y \right) \right| \leq C \left(\frac{\left| \left(\Delta_{h, \eta} f \right) \left(x, y \right) \right|}{\left(h + t \right)^{-\alpha}} - x^\alpha \left| \left(\Delta_{\tau, t} g \right) \left(x, y \right) \right| \left(\tau + \eta \right)^{\beta - 1} - \left(\tau - \eta \right)^{\beta - 1} \int \left(\tau + \eta \right)^{\beta - 1} - \left(\tau - \eta \right)^{\beta - 1} d\tau dt.
\]

Each term of this inequality is estimated in the standard way, and one can obtain
\[
\left| \left(\Delta_{h, \eta} f \right) \left(x, y \right) \right| \leq C(h \eta) \int_0^1 \int_0^1 \left(\Delta_{t, \tau} g \right) \left(x, y \right) \left(h + t \right)^{\beta - 1} - \left(h - t \right)^{\beta - 1} \int \left(\tau + \eta \right)^{\beta - 1} - \left(\tau - \eta \right)^{\beta - 1} d\tau dt.
\]

From which inequality (11) follows.

Theorem 4. Let \(\rho(x, y) = x^\mu y^\nu \), \(0 \leq \mu < 2 - \alpha \), \(0 \leq \nu < 2 - \beta \). If the function \(\varphi(x, y) \in Q \) satisfies the following conditions:

1) \(\varphi_0(x, y) = \rho(x, y) \varphi(x, y) \in C(Q) \) and \(\varphi_0(x, y) \big|_{x=0, y=0} = 0 \);

2) \(\int_0^1 \int_0^1 \frac{\alpha(\rho \tau) \left(t, \tau \right)}{t^{\alpha} \tau^{\beta}} dt d\tau \) The integral converges for \(\gamma = \max\{1, \mu\}, \lambda = \max\{1, \nu\} \). Then the following estimates of Zygmund type are valid.
\[
\begin{align*}
\omega(\rho f; h, 0) & \leq C_1 \left[h^{\alpha-1} \int_0^{1,1} \omega(\rho \Phi; d) \, dt + h^{1,1} \int_0^h \omega(\rho \Phi; t) \, dt \right], \\
\omega(\rho f; 0, \eta) & \leq C_2 \left[\eta^{\beta-1} \int_0^{1,1} \omega(\rho \Phi; b \tau) \, d\tau + \eta^{1,1} \int_0^\eta \omega(\rho \Phi; b \tau) \, d\tau \right], \\
\omega(\rho f; h, \eta) & \leq C_3 \left[h^{\alpha-1} \eta^{\beta-1} \int_0^h \int_0^{1,1} \omega(\rho \Phi; \tau) \, d\tau d\tau + h \eta^{1,1} \int_0^h \omega(\rho \Phi; \tau) \, d\tau d\tau + \\
& + h^{\alpha-1} \eta^{1,1} \int_0^h \int_0^h \omega(\rho \Phi; \tau) \, d\tau d\tau \right].
\end{align*}
\]

Proof. By Remark 1, it suffices to deal with the case \(\mu, \nu \geq 1 \). Let \(\Phi \in \widetilde{H}_0^o(\rho) \) so that \(\Phi_0(x, y) = \Phi(x, y)\rho(x, y) \), where \(\Phi_0(x, y) \in \widetilde{H}_0^o \) and \(\Phi_0(x, y) \big|_{x=y=0} = 0 \). For

\[
G(x, y) := \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_0^x \int_0^y \frac{\Phi_0(t, \tau) d\tau d\tau}{(x-t)^{\alpha-1}(y-\tau)^{\beta-1}}.
\]

We represent \(G(x, y) \) in the form

\[
G(x, y) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \left(\int_0^x \int_0^y \frac{\Phi_0(t, \tau) d\tau d\tau}{(x-t)^{\alpha-1}(y-\tau)^{\beta-1}} + \int_0^x \int_0^y B(x, y; t, \tau) \Phi_0(t, \tau) d\tau d\tau \right) = \\
= G_1(x, y) + G_2(x, y).
\]

Here the question of the estimation of the modulus of continuity for the first term is solved by us in Theorem 3.

To estimate the term \(G_2(x, y) \), we note that the weight being degenerate, we have

\[
\rho(x, y) - \rho(t, \tau) = (\rho(x) - \rho(t))(\rho(y) - \rho(\tau)) + (\rho(\tau) - \rho(x)) + (\rho(y) - \rho(\tau)).
\]

which leads to the following representation

\[
G(x, y) = \int_0^x \int_0^y B_1(x, t)B_2(y, \tau) \Phi_0(t, \tau) d\tau d\tau + \int_0^x \int_0^y B_1(x, t) \Phi_0(t, \tau) d\tau d\tau + \\
\int_0^x \int_0^y B_2(y, \tau) \Phi_0(t, \tau) d\tau d\tau.
\]

Where the notation (4) has been used.

For the difference \(\left(\Delta_h G_2 \right)(x, y) \) with \(h > 0 \) and \(x, x+h \in [0, b] \), we have

\[
\left(\Delta_h G_2 \right)(x, y) = \int_0^x \int_0^y B_1(x+h, t)B_2(y, \tau) \Phi_0(t, \tau) d\tau d\tau + \int_0^y \int_0^x D_1(x, h, t)B_2(y, \tau) \Phi_0(t, \tau) d\tau d\tau + \\
+ \int_0^y \int_0^x B_1(x+h, t) \Phi_0(t, \tau) d\tau d\tau + \int_0^y \int_0^x D_1(x, h, t) \Phi_0(t, \tau) d\tau d\tau + \\
\int_0^y \int_0^x B_2(y, \tau) \Phi_0(t, \tau) d\tau d\tau.
\]
Since \(\varphi_0(x, 0) = 0 \) then the inequality
\[
|G_2(x + h, y) - G_2(x, y)| \leq \int_0^h \int x \left| B_1(x + h, t) \right| \left| B_2(y, \tau) \right| |\omega(\varphi_0; t, \tau)| dt d\tau +
\]
\[
+ \int_0^h \int_{-h}^{h} \frac{1}{(h + t)^{\alpha-1}} \left| B_2(y, \tau) \right| dt d\tau + \int_0^h \int_{-h}^{h} \frac{1}{(y - \tau)^{1-\beta}} \left| D_1(x, h, t) \right| \left| B_2(y, \tau) \right| |\omega(\varphi_0; t, \tau)| dt d\tau +
\]
\[
+ \int_0^h \int_{-h}^{h} \frac{1}{(h + t)^{\alpha-1} - t^{\alpha-1}} \left| B_2(y, \tau) \right| dt d\tau.
\]

We estimate integral \(\int_0^h \int |B_2(y, \tau)| |\omega(\varphi_0; t, \tau)| dt d\tau \). Let \(1 \leq \nu < 2 - \beta \), then from (5) we have
\[
\int_0^h \int |B_2(y, \tau)| |\omega(\varphi_0; t, \tau)| dt d\tau \leq C \int_0^h \frac{(y - \tau)^{\beta-1}}{\tau} \omega(\varphi_0; t, \tau) dt d\tau \leq C \omega(\varphi_0; t, \tau).
\]

Now we estimate next integral
\[
\int_0^h \frac{1}{\tau^{1-\beta}} \omega(\varphi_0; t, \tau) d\tau \leq C \int_0^h \frac{1}{\tau} \omega(\varphi_0; t, \tau) d\tau \leq C \omega(\varphi_0; t, \tau).
\]

From here and the estimates \(\Delta_1, \Delta_2, \Delta_3 \) of Theorem 1 and from the estimates \(F_1, F_2 \) in Theorem 2, one can easily verify the validity of inequality
\[
\left| \Delta_h G_2(x, y) \right| \leq C_1 \left[h^{1-\gamma} \int_0^h \frac{1}{t} \omega(\varphi_0; t, \tau) d\tau + h \int_0^h \frac{1}{t^2} \omega(\varphi_0; t, \tau) d\tau \right],
\]
where \(\gamma = \max(1, \mu) \).

The estimate
\[
\left| \Delta_{h, \eta} G_2(x, y) \right| \leq C_2 \left[\eta^{1-\lambda} \int_0^\eta \frac{1}{\tau} \omega(\varphi_0; b, \tau) d\tau + \eta \int_0^\eta \frac{1}{\tau^2} \omega(\varphi_0; b, \tau) d\tau \right],
\]
is symmetrically obtained, where \(\lambda = \max(1, \nu) \).

For the mixed difference \(\Delta_{h, \eta} G_2(x, y) \) with \(h, \eta > 0 \) and \(\forall x, x + h \in [a, b], \forall y, y + \eta \in [c, d] \)
the appropriate representation leading to the separate evaluation in each variable without losses in another variable is as follows:
\[
\left| \Delta_{h, \eta} G_2(x, y) \right| = \int_0^h \int_0^\eta \frac{1}{x} \left| B_2(x + h, t) B_2(y + \eta, \tau) \varphi_0(t, \tau) dt d\tau +
\]

\[
+ \int_{0}^{\eta} \int_{y}^{\eta} D_{1}(x, h, t) D_{2}(y, \eta, \tau) \varphi_{0}(t, \tau) dtd\tau + \int_{0}^{x} \int_{y}^{y_{2}} B_{1}(x, h, t) D_{2}(y, \eta, \tau) \varphi_{0}(t, \tau) dtd\tau + \\
+ \int_{0}^{x} \int_{y}^{y_{2}} D_{1}(x, h, t) B_{2}(y + \eta, \tau) \varphi_{0}(t, \tau) dtd\tau + \int_{x}^{y_{2}} \int_{y}^{y_{2}} \frac{B_{1}(x + h, t)}{(y + \eta - \tau)^{1-\beta}} \varphi_{0}(t, \tau) dtd\tau + \\
+ \int_{x}^{y_{2}} \int_{y}^{y_{2}} B_{1}(x + h, t)[(y + \eta - \tau)^{\beta-1} - (y - \tau)^{\beta-1}] \varphi_{0}(t, \tau) dtd\tau + \\
+ \int_{x}^{y_{2}} \int_{y}^{y_{2}} D_{1}(x, h, t)(y + \eta - \tau)^{\beta-1} \varphi_{0}(t, \tau) dtd\tau + \\
+ \int_{0}^{x} \int_{y}^{y_{2}} (x + h - t)^{\alpha-1} B_{2}(y + \eta, \tau) \varphi_{0}(t, \tau) dtd\tau + \\
+ \int_{0}^{y_{2}} \int_{y}^{y_{2}} [(x + h - t)^{\alpha-1} - (x - t)^{\alpha-1}] B_{2}(y + \eta, \tau) \varphi_{0}(t, \tau) dtd\tau + \\
+ \int_{0}^{y_{2}} \int_{y}^{y_{2}} (x + h - t)^{\alpha-1} D_{2}(y, \eta, \tau) \varphi_{0}(t, \tau) dtd\tau + \\
+ \int_{0}^{y_{2}} \int_{y}^{y_{2}} [(x + h - t)^{\alpha-1} - (x - t)^{\alpha-1}] D_{2}(y, \eta, \tau) \varphi_{0}(t, \tau) dtd\tau.
\]

The inequality is rightly
\[
\left| \left(\Delta_{h, \eta} G_{2} \right)(x, y) \right| \leq C \int_{0}^{x} \int_{y_{2}}^{y_{2}} B_{1}(x + h, t) B_{2}(y + \eta, \tau) \varphi_{0}(t, \tau) dtd\tau + \\
+ \int_{0}^{x} \int_{y_{2}}^{y_{2}} D_{1}(x, h, t) D_{2}(y, \eta, \tau) \omega(\varphi_{0}; t, \tau) dtd\tau + \\
+ \int_{0}^{x} \int_{y_{2}}^{y_{2}} B_{1}(x + h, t) D_{2}(y, \eta, \tau) \omega(\varphi_{0}; t, \tau) dtd\tau + \\
+ \int_{0}^{y_{2}} \int_{y}^{y_{2}} D_{1}(x, h, t) B_{2}(y + \eta, \tau) \omega(\varphi_{0}; t, \tau) dtd\tau + \\
+ \int_{0}^{y_{2}} \int_{y}^{y_{2}} B_{1}(x + h, t)[(\eta + \tau)^{\beta-1} - \tau^{\beta-1}] \omega(\varphi_{0}; t, \tau) dtd\tau + \\
+ \int_{0}^{y_{2}} \int_{y}^{y_{2}} D_{1}(x, h, t) \omega(\varphi_{0}; t, \tau) dtd\tau + \\
+ \int_{0}^{y_{2}} \int_{y}^{y_{2}} B_{1}(x + h, t)[(\eta + \tau)^{\beta-1} - \tau^{\beta-1}] \omega(\varphi_{0}; t, \tau) dtd\tau + \\
+ \int_{0}^{y_{2}} \int_{y}^{y_{2}} D_{1}(x, h, t)[(\eta + \tau)^{\beta-1} - \tau^{\beta-1}] \omega(\varphi_{0}; t, \tau) dtd\tau + \\
+ \int_{0}^{y_{2}} \int_{y}^{y_{2}} B_{1}(x + h, t)[(\eta + \tau)^{\beta-1} - \tau^{\beta-1}] \omega(\varphi_{0}; t, \tau) dtd\tau + \\
+ \int_{0}^{y_{2}} \int_{y}^{y_{2}} D_{1}(x, h, t)[(\eta + \tau)^{\beta-1} - \tau^{\beta-1}] \omega(\varphi_{0}; t, \tau) dtd\tau + \\
+ \int_{0}^{y_{2}} \int_{y}^{y_{2}} B_{1}(x + h, t)[(\eta + \tau)^{\beta-1} - \tau^{\beta-1}] \omega(\varphi_{0}; t, \tau) dtd\tau + \\
+ \int_{0}^{y_{2}} \int_{y}^{y_{2}} D_{1}(x, h, t)[(\eta + \tau)^{\beta-1} - \tau^{\beta-1}] \omega(\varphi_{0}; t, \tau) dtd\tau + \\
+ \int_{0}^{y_{2}} \int_{y}^{y_{2}} B_{1}(x + h, t)[(\eta + \tau)^{\beta-1} - \tau^{\beta-1}] \omega(\varphi_{0}; t, \tau) dtd\tau + \"]
We omit the details of evaluation of each term in the above representation; it is standard via Lemma 1 and yields
\[
\left| \Delta^{\alpha, \beta}_{x, \eta} G_2(x, y) \right| \leq C_3 \left[h^{\alpha+1} \eta^{\beta+1-\lambda} \int_{0}^{1} \frac{\omega(x, \tau)}{\tau^{1-\lambda}} d\tau + h^{\beta+1-\lambda} \int_{0}^{1} \frac{\omega(y, \tau)}{\tau^{2-\alpha}} d\tau + h^{\beta+1-\lambda} \int_{0}^{1} \frac{\omega(y, \tau)}{\tau^{2-\alpha}} d\tau \right],
\]
where \(\gamma = \max(1, \mu) \) and \(\lambda = \max(1, \nu) \).

From the inequalities (21), (20), (19) and (12), (13) we obtain the corresponding estimates (16), (17) and (18).

Mapping properties of the mixed fractional integration operators in the space \(\tilde{H}_0^\alpha(\rho) \)

In this section, we give a generalization of the theorem to the weighted.

Theorem 5. Let \(0 < \alpha, \beta < 1, \rho(x, y) = x^\mu y^\nu, 0 \leq \mu < 2 - \alpha \) and \(0 \leq \nu < 2 - \beta \). If \(\omega(x, y) \in \Phi(Q) \) and assume that

1. \(\int_{0}^{1} \int_{0}^{1} \left(\frac{x^\mu y^\nu}{t^\mu} \right)^{1-\lambda} \frac{\omega(t, \tau)}{\tau^{1-\lambda}} dt d\tau \leq C_1 \omega(x, y), \) \hspace{1cm} (22)

2. \(\int_{0}^{1} \int_{0}^{1} \left(\frac{x^\mu y^\nu}{t^\mu} \right)^{1-\beta} \frac{\omega(t, \tau)}{\tau^{1-\beta}} dt d\tau \leq C_1 \omega(x, y), \) \hspace{1cm} (23)

where \(\gamma = \max(\mu - 1, 0), \lambda = \max(\nu - 1, 0) \). Then the mixed fractional integral operator (1) is bounded from the weight space \(\tilde{H}_0^\alpha(\rho) \) to the space \(\tilde{H}_0^{\alpha, \beta}(\rho) \) with the same weight and with the characteristic \(\omega_{\alpha, \beta}(t, \tau) = t^{\alpha-\gamma} \tau^{\beta-\lambda} \omega(t, \tau). \)

Proof. Let \(f = I_{0+}^{\alpha, \beta} \rho \) \(\omega \in \tilde{H}_0^\alpha(\rho) \). We will show that \(f \in \tilde{H}_0^{\alpha, \beta}(\rho) \). For this, it suffices to show that

\[
\sup_{h > 0} \frac{\omega(\rho f; h, 0)}{h^\alpha \omega_1(h)} = C_1 < \infty, \quad \sup_{\eta > 0} \frac{\omega(\rho f; 0, \eta)}{\eta^\beta \omega_2(\eta)} = C_2 < \infty,
\]
\[
\sup_{h > 0, \eta > 0} \frac{\omega(\rho f; h, \eta)}{h^\alpha \eta^\beta \omega_{1, 1}(h, \eta)} = C_3 < \infty.
\]

From membership \(\omega(t, \tau) \) in the class \(\Phi(Q) \) and satisfaction of inequalities (22), (23) the convergence of the integrals follows
Therefore, there are estimates of the Zygmund type from Theorem 4. Whence follows
\[
\frac{\omega(\rho f; 0, \eta)}{\eta^0 \omega_{1,1}(b, \eta)} \leq C_2 \left\{ \frac{\eta^{-1}}{\omega_{1,1}(b, \eta)} \int_0^{1,1} \frac{\omega(b, \tau)}{\tau^\beta} d\tau + \frac{\eta^{-1}}{\omega_{1,1}(b, \eta)} \int_0^{1,1} \frac{d}{\omega(b, \tau)} \right\}.
\]

It’s obvious that
\[
\frac{\omega(\rho f; 0, \eta)}{\eta^0 \omega_{1,1}(b, \eta)} \leq C_3 \|\phi\|_{\tilde{H}_{0}^0(\rho)}, \quad \frac{\omega(\rho f; 0, \eta)}{\eta^0 \omega_{1,1}(b, \eta)} \leq C_2 \|\phi\|_{\tilde{H}_{0}^0(\rho)}.
\]

We estimate \(\|f\|_{C(Q)} \). We have
\[\rho(x, y)f(x, y) = x^\alpha y^\beta \int_0^1 \int_0^1 \varphi_0(x - t, y - \tau) \frac{dt d\tau}{(1 - t)^{1-\alpha} (1 - \tau)^{1-\beta}} = \]
\[= x^\alpha y^\beta \int_0^1 \int_0^1 \varphi_0 \left| \frac{x - x_\xi, y - y s}{(1 - \xi)^{1-\alpha} (1 - s)^{1-\beta}} \right| ds d\xi. \]

Since \(\varphi_0(x, y) \mid_{x_0, y_0} = 0 \), then
\[|\varphi_0(x - x_\xi, y - y s) - \varphi_0(0, y - y s)| \leq C_1 \alpha(\varphi_0; 1 - \xi), \]
\[|\varphi_0(x - x_\xi, y - y s) - \varphi_0(x - x_\xi, 0)| \leq C_2 \alpha(\varphi_0; 1 - s), \]
\[\left| \left(\Delta_{s(1-\xi), \tau(1-s)} \varphi_0 \right)(x, y) \right| \leq C_3 \alpha(\varphi_0; 1 - \xi, 1 - s). \]

It follows that
\[|\rho(x, y)f(x, y)| \leq C \| \varphi_0 \|_{H_0^\alpha(p)} \int_0^1 \int_0^1 \omega_{1,1}(t, \tau) t^{\alpha-1} (1 - t)^{\beta-1} dt d\tau, \]

Therefore
\[\| \rho f \|_{C(Q)} \leq C \| \varphi_0 \|_{H_0^\alpha(p)}. \]

From the inequalities (24) and (25) follows the assertion of the theorem.

References

\[\rho(x) = (x - a)^\mu (b - x)^\nu \] and given continuity modulus (Russian). Deposited in VINITI, Moscow, No. 3350-B, 25 p.

