
J Clinical Oncology Research and Reports                                                                                                                                                                  Copy rights@ Vladimir N Pak. 

 
 

 
 
Auctores Publishing – Volume 1(1)-003 www.auctoresonline.org  
                                                                                                                                                                                                                                                       Page 1 of 3 

 

Magic Targets for Magic Bullet 

Vladimir N Pak  

Freelance researcher, Toronto, Canada.  

Corresponding Author: Freelance researcher, Toronto, Canada. E-mail: oncoshut@gmail.com 

Received Date: February 05, 2020; Accepted Date: February 21, 2020; Published Date: February 24, 2020. 

Citation: Vladimir N Pak, Freelance researcher, Toronto, Canada, J.Clinical Oncology Research and Reports. 1(1). Doi:10.31579/2693-4787/003 

Copyright: © 2020 Vladimir N Pak, This is an open-access article distributed under the terms of the Creative Commons Attribution License, 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 

Abstract 

The “magic bullet” by Paul Ehrlich is a chemotherapeutic, which can precisely locate and destroy tumor cells. For 

over 100 years, a great number of approaches have been developed for targeted delivery of toxins. Nevertheless, the 

progress in the battle with cancer is moderate. In reality, the magic bullet is unable to destroy cancer cells with 100% 

efficacy. However, cancer cells are neither an optimal nor the only possible target. The magic bullet needs a “magic 

target”.  
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Introduction 

The “magic bullet” by Paul Ehrlich is a chemotherapeutic, which 

can precisely locate and destroy tumor cells. For over 100 years, a great 

number of approaches have been developed for targeted delivery of 

toxins. Nevertheless, the progress in the battle with cancer is moderate. In 

reality, the magic bullet is unable to destroy cancer cells with 100% 

efficacy. However, cancer cells are neither an optimal nor the only 

possible target. The magic bullet needs a “magic target”.  

Billions of cells die and are recycled every day. Each of the 

newborn cell inevitably accumulate mutations. During a human lifetime, 

two anti-cancer systems: apoptosis and immunity, are perfectly able to 

protect the majority of us. In case of cancer, both systems are damaged 

and do not eliminate “wrong” cells. The magic bullet can destroy cancer 

cell, but it is only one side of the coin. Immune system should be repaired 

too.  

Immune checkpoint inhibitors (ICIs), CAR-T cells, natural 

killer (NK) cells and other approaches are used for cancer 

immunotherapy. 

A number of patients do not respond to ICIs treatment due to 

profound immunosuppression, which is mediated by myeloid-derived 

suppressor cells (MDSCs). MDSCs can largely inhibit anti-tumor 

activities of cytotoxic lymphocytes (CTLs) and NK cells, and stimulate 

regulatory T cells (T-regs), leading to tumor progression [1]. 

CAR-T cells therapy provokes fever and elevated IL-6 levels 

that are often followed by life-threatening cytokine-release syndrome 

(CRS) and neurotoxicity [2]. Monocytes are the major source of IL-6 

during CRS and their depletion can prevent syndrome [3]. 

Both ICIs and CAR-T cells rely on adaptive immunity, carry risk 

of serious side effects and have limited efficacy in the majority of patients. 

In the hierarchy of innate and adaptive immunity cells, large numbers of 

executive NK cells and CTLs are controlled by lesser quantity of T-regs 

and a smaller number of MDSCs. MDSC and monocyte depletion can 

improve ICIs and CAR-T cells therapy [1, 3]. MDSC depletion is a 

powerful immunotherapy strategy itself [4, 5, and 6] and it should prevail 

over ICIs or CAR-T cells immunotherapies in efficacy, as it initiates 

additional attacks by NK cells on cancer stem cells and metastases [7, 8]. 

MDSCs as an immunotherapy target. 

MDSC background, its physiologic function, roles in cancer and 

important progress in cancer research related to MDSC targeting are well 

described [9, 10, and 11]. MDSCs play a major role in the profound 

immune suppression during pregnancy and cancer, even ahead of T-regs 

[12]. They can be regarded as the main tumor-induced negative regulators 

of cancer immunity, as well as the suppressors of innate immunity NK 

cells [13].  

MDSCs depletion can reverse immune suppression and activate 

the second natural anti-cancer defense system – our own immunity. 

Unlike chemotherapy, it does not require 100% efficacy. MDSCs play a 

pivotal role in the balance of pro- and anti-cancer immune forces at the 

tumor site [14]; while even partial reduction of regulatory suppressor cells 

can shift the tumor microenvironment balance into desired active state, 

and unleash an army of subordinate executive cells. Taking into account 

the considerably smaller quantity of MDSCs compared to the quantity of 

cancer cells, we can assume that MDSC-depleting immunotherapy needs 

less magic bullets to achieve massive cancer cells elimination. Low doses 

ensure treatment safety and reduce cost.  

Non-specific chemotherapeutics administered in low doses 

deplete MDSCs, which supports MDSCs role in cancer immunotherapy 

[15, 16, and 17]. 

Selective targeting TRAIL receptor 2 with antibody eliminate 

MDSCs in the patients with advanced stages of cancer. MDSCs depletion 

with antibody administered intravenously resulted in MDSCs subsets 

reduction without affecting the number of neutrophils, monocytes, and 

other populations of myeloid and lymphoid cells. A transitory decrease of 

the elevated MDSCs numbers was inversely correlated with the length of 

patients’ survival [18].  

AFP-binding regulatory immune cells. 

Alpha-fetoprotein (AFP) was used for toxin specific delivery 

into AFP receptor (AFPR)-positive cancer cells [19, 20]. MDSCs were 

found to be AFPR-positive too and they were specifically targeted with 

AFP+toxins drugs. In mice, AFP+daunorubicin chemical conjugate 

decreased MDSCs population and unleashed NK cells to destroy tumors 

[21].  

Low doses of the AFP non-covalent complex with amphotericin 

B were applied as infusions to cancer patients [22]. The complex did not 

provoke toxicity or immunity and hemopoiesis depression. A full or a 
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partial clinical effect was achieved in six patients out of eight. One bullet 

can hit only one target, so AFP+amphotericin B complex could not have 

affected a lot of AFPR-positive cancer cells. A more viable explanation 

of such a disproportionate effect in tumor and metastases reduction is that 

the AFP+toxin complex deplete MDSCs [23]. 

Unlike injectable forms, oral administration cannot provide 

direct contact of AFP+toxin complex with AFPR-positive cancer cells or 

MDSCs. Unenhanced bioavailability for oral routes of administration for 

protein/peptide pharmaceuticals accounts to no more than 0-1% [24]. 

Proteins enzymatic instability and gastro intestinal (GI) permeation are 

the main challenges. Nevertheless, oral administration of the 

AFP+atractyloside non-covalent complex in suboptimal doses was well-

tolerated and produced major objective responses in six out of twelve liver 

metastatic colorectal cancer patients [25, 26]. 

An investigation conducted into the possible reasons for such 

disproportionate response have shown that AFP was not absorbed into the 

mice blood after per oral administration, neither in free form nor in a 

complex with toxin [Unpublished]. Moreover, unlike in the blood and 

tumor site, MDSCs are sparsely distributed in the intestinal lymphatic 

system, which contains majority of immune cells of the body. So, there 

should be different AFP-binding immune cells which depletion leads to 

distant metastases reduction. 

Discussion 

In the adult human gut, both enterocytes in a thin layer of 

connective tissue of the GI tract and dendritic cells (DCs) in lymphatic 

system express neonatal Fc receptor (FcRn), which specifically binds 

IgG, albumin [27] and AFP [28]. These three proteins can bind and deliver 

their ligands from the gut into the lymphatic system. For example, IgG 

can deliver antigens from the gut to lymphatic system in a shuttle manner 

[29]. AFP has a stronger binding affinity to FcRn than albumin [28], it 

can compete with IgG for FcRn binding and hence, its ligand (e.g. toxin 

bound with AFP) can be transferred from the gut to lymphatic system.  

In the lymphatic system FcRn is mainly present in DCs but it is 

also expressed by monocytes, macrophages and neutrophils [30, 31]. 

Human peripheral monocytes and macrophages also possess AFPR which 

is involved with the physiological regulation of the immune response 

[32].  

In the draining lymph nodes AFP+atractyloside complex should 

be absorbed by AFP-binding immature monocytes, macrophages, DCs, or 

other cells. Similar to MDSCs depletion in the blood these cells 

subsequent death can possibly induce innate immunity-mediated sterile 

inflammation and generate response which eventually reduces distant 

metastases. 

Depletion of the hierarchy top immune cells in both injectable 

and oral AFP+toxin administrations and subsequent anti-cancer effect 

prevails over their magic bullet one. The regulatory AFP-binding cells 

can be considered the “magic targets” for immunotherapy. In the case of 

injectable AFP+toxin drug a traditional magic bullet is combined with the 

magic bullet hitting the “magic target” - MDSCs. This therapy can fix 

both natural anti-cancer systems – apoptosis and immunity.  
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