
 

 
 

 

The adult pineal gland is composed of pinealocytes, astrocytes, 

microglia, and other interstitial cells that have been described in detail. 

However, factors that contribute to pineal development have not been 

fully elucidated, nor have pineal cell lineages been well characterized. 

We applied systematic double, triple and quadruple labeling of cell-

specific markers on prenatal, postnatal and mature rat pineal gland 

tissue combined with confocal microscopy to provide a 

comprehensive view of the cellular dynamics and cell lineages that 

contribute to pineal gland development. The pineal gland begins as an 

evagination of neuroepithelium in the roof of the third ventricle. The 

pineal primordium initially consists of radially aligned Pax6+ 

precursor cells that express vimentin and divide at the ventricular 

lumen. After the tubular neuroepithelium fuses, the distribution of 

Pax6+ cells transitions to include rosette-like structures and later, 

dispersed cells. In the developing gland all dividing cells express 

Pax6, indicating that Pax6+ precursor cells generate pinealocytes and 

some interstitial cells. The density of Pax6+ cells decreases across 

pineal development as a result of cellular differentiation and 

microglial phagocytosis, but Pax6+ cells remain in the adult gland as a 

distinct population. Microglial colonization begins after pineal recess 

formation. Microglial phagocytosis of Pax6+ cells is not common at 

early stages but increases as microglia colonize the gland. In the 

postnatal gland microglia affiliate with Tuj1+ nerve fibers, IB4+ blood 

vessels, and Pax6+ cells. We demonstrate that microglia engulf Pax6+ 

cells, nerve fibers, and blood vessel-related elements, but not 

pinealocytes. We conclude that microglia play a role in pineal gland 

formation and homeostasis by regulating the precursor cell population, 

remodeling blood vessels and pruning sympathetic nerve fibers. 

In vertebrates, the pineal gland effects and regulates the circadian 

timing system by transducing environmental light into an internal 

signal, the nocturnal melatonin [1]. The pineal gland develops from a 

committed area of the neuroepithelium that lines the roof of the third 

ventricle in the prenatal brain, and its maturation continues 

postnatally. During the first postnatal week the rat pineal gland begins 

responding in a rhythmic fashion to sympathetic innervation from the 

superior cervical ganglia [2,3], which relay circadian information from 

the suprachiasmatic nuclei (SCN). While a growing body of work has 

identified cellular and transcriptional mechanisms required for pineal 

ontogeny, additional factors that contribute to pineal development and 

homeostasis have not been fully elucidated. 

A dynamic and intricate regulatory network of transcription factors 

drives the definition and maintenance of pineal phenotype [4–10]. The 

homeobox transcription factors Pax6, Otx2 and Lhx9 are necessary for 

proper pineal gland formation [11–16]. Pax6 is considered one of the 

earliest phenotype determinants responsible for regulating pinealocyte 

specification and prenatal proliferation since the pineal gland fails to 

develop in the absence of functional Pax6. Rath et al. demonstrated 

that Pax6 mRNA expression peaks in the developing rat pineal gland 

on embryonic (E) day 18, followed by a rapid perinatal decline [17]. 

 

However, the cells that express the Pax6 protein have not been fully 

characterized in terms of their location, distribution, function or 

relationship with other cells in the pineal gland. In addition, the Pax6+ cell 

lineage fate throughout pineal development has not been well delineated. 

In this study we present the ontogeny of the Pax6+ cell lineage in the rat 

pineal gland, and how interactions between Pax6+ cells and other pineal 

gland cell types contribute to gland formation and homeostasis. 

The mature pineal gland is considered a relatively homogeneous organ 

that is composed of a small set of well-defined cell types. Approximately 

95% of the cells are pinealocytes, with the remainder consisting mainly of 

interstitial cells–astrocytes and microglia–embedded in a network of blood 

vessels and nerve fibers [18]. The concept of pinealocyte homogeneity, 

however, is currently being reevaluated [10,19]. Microglia have been 

identified as one of the pineal interstitial cell types via OX6 (MHCII), 

OX42 (CD11b), IL-1β, ED1 (CD68), and TNF-R1 expression, among 

other markers [20–26]. Microglia have been reported to play several roles 

in the pineal gland, including regulation of pinealocyte neurites in a 

cytokine-dependent manner [27–30]; serving as antigen-presenting cells 

[20,22]; sensing physical injury, bacteria, and hypoxia [21,31,32], and 

modulating pineal melatonin [31–35]. Our data expand the repertoire of 

microglial functions in the developing and adult pineal gland. We show 

that microglia phagocytose Pax6+ cells, especially in the adult gland, and 

also engulf blood vessel and nerve fiber elements. Our data provide a 

novel perspective on the cellular dynamics that shape formation of the 

developing pineal gland and homeostasis in the mature pineal gland. 
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