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Abstract 

The chromatin remodeling factor chromodomain helicase DNA-binding protein 4 (CHD4) is a core component of the nucleosome 

remodeling and deacetylase (NuRD) complex. Due to its important role in DNA damage repair, CHD4 has been identified as a key determinant 

in cancer progression, stem cell differentiation, and T cell and B cell development. Accumulating evidence has revealed that CHD4 can 

function in NuRD dependent and independent manner in response to DNA damage. Mutations of CHD4 have been shown to diminish its 

functions, which indicates that interpretation of its mutations may provide tangible benefit for patients. The expression of CHD4 play a dual 

role in sensitizing cancer cells to chemotherapeutic agents, which provides new insights into the contribution of CHD4 to tumor biology and 

new therapeutic avenues.  
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Introduction 

Known as Mi2β, Chromodomain helicase DNA-binding 4 

(CHD4), a highly conserved protein (~250 kDa) in animals and plants 

[1], is one of members of the SNF2/RAD54 helicase family, which 

use the energy derived from ATP hydrolysis to remodel nucleosome 

structure [2, 3]. It comprises a core ATPase/helicase domain flanked 

by two Plant Homeodomain motifs (PHD fingers) that recognize 

modifications of histone tails, tandem chromodomains, and carboxyl-
terminal domains necessary for transcriptional repression.  

The ATPase domain enables CHD4 to use energy from ATP 

hydrolysis to remodel nucleosomes along DNA [4]. In this context, 

CHD4 serves as a key component of the nucleosome remodeling and 

deacetylase (NuRD) complex, which plays an important role in 

regulation of chromatin structure, gene expression, and cell cycle 

progression during normal development and tumorigenesis [5, 6]. In 

addition to CHD4, NuRD also contains a core of two lysine 

deacetylase proteins, HDAC1 and HDAC2, two chaperone proteins, 

RBBP4 and RBBP7, together with associated proteins [1, 7, 8]. It is 

important to point out that CHD4-NuRD complex is recruited to sites 

by interaction with sequence-specific DNA binding proteins, instead 

of recognizing specific DNA sequences [9-11]. After the interaction 

with DNA binding protein, the local chromatin structures are modified 

through nucleosomes remodeling, histone deacetylation, and promoter 

decommissioning [12-14]. Therefore, CHD4-NuRD complex has been 
identified as an integral driver of transcription. 

Although CHD4 is defined as core NuRD component, 

increasing evidence is accumulating that CHD4 also play important 

NuRD-independent role in the DNA-damage response, cell cycle 

progression, signal transduction, and overall genome maintenance [8, 

15, 16]. An early study shows that CHD4 associates with the CD4 

enhancer independently of NuRD to activate CD4 expression during 

T-cell development[15]. In the Ikaros-deleted thymocyte system, 

CHD4 functions in a NuRD-independent manner to antagonize PRC2-

mediated transcriptional repression [17]. In addition, the PHD fingers 

of CHD4 enable it to directly bind both un-methylated (H3K4) as well 

as K9-methylated (H3K9me3) N-terminal tails of histone H3  [18, 19]. 

The dual properties of CHD4 that both regulate chromatin structure 

via ATP hydrolysis and bind histone H3 indicate that it involves in 

different aspects of chromatin accessibility.   

 

Despite the increasing characterization of this transcriptional 

regulator, we still know little about the function of CHD4 in cancer 

progression as a DNA-repair protein. Recent studies suggest the roles 

CHD4 in both promoting and suppressing tumor growth [20-24]. For 

instance, CHD4 expression level is positively correlated with the 

malignant progression of non-small-cell lung cancer [25]. More recently, 

CHD4 expression was found to be positively correlated with metastatic 

stage, tumor recurrence and survival status in triple-negative breast cancer 

(TNBC) [21].  Interestingly, CHD4 is also implicated as a tumor 

suppressor in some cancer types [22]. We previously reported that CHD4 

depletion and CHD4 mutations promote endometrial cancer stemness by 

activating TGF-beta signaling [23]. In this review, we summarized the role 

of this transcriptional regulator in DNA repair and its potential roles in the 
development of novel anti-cancer drugs.  

The role of CHD4 in regulating DNA damage response 

In response to DNA damage, cells initiate DNA-damage 

response (DDR) to prevent tumorigenesis [26-28]. The activation of DDR 

involves in the recruitment of DDR proteins to the damaged sites in an 

orchestrated manner. Increasing evidence has demonstrated that CHD4 

plays an important role in genome integrity by regulating signaling and 

repair in response to DNA damage [29-31]. However, it is not clear 
whether CHD4 functions as a part of NuRD or independently of NuRD. 

In response to DNA damage, CHD4 can be recruited to the sites 

of DNA damage by different models. One model is NuRD complex 

dependent, where CHD4-NuRD complex is rapidly recruited to the sites of 

DNA damage through the association with Poly(ADP-ribose) polymerase 

1 (PARP1) [31-33]. In this model, CHD4 helps set up a transient 

repressive chromatin structure at sites of DNA damage to facilitate DNA 

repair. Another model is NuRD complex independent, where CHD4 is 

recruited to the sites of DNA damage by RING finger ubiquitin ligase 8 

(RNF8), which promotes assembly of a subset of DNA repair factors such 

as RNF168 and BRCA1 at the sites of the DNA damage [16]. In addition, 

CHD4 can be phosphorylated by the DNA damage response kinases ATM 

[34, 35] and ATR [36], and in turn CHD4 can also regulate the Tip60-
dependent phosphorylation of ATM [37] in response to DNA damage.  
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However, what is currently unknown is that whether CHD4 

functions to maintain genome integrity prior to DNA damage, or it is 

required to repair damage upon DNA damage.  For  instance,  CHD4  was  
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CHD4 expression was found to be associated with 

metastatic stage, tumor recurrence and survival status, and loss of 

CHD4 expression sensitizes cells to DNA-damaging agents  [37, 50, 

51].  We previously demonstrated the importance of CHD4 in 

controlling HR repair to maintain genome stability, and that deficiency 

in CHD4 impairs the recruitment of BRIT1 and sensitizes cells to poly 

(ADP-ribose) polymerase inhibitor treatment [51].  Subsequently, an 

siRNA screen by Carolian D’Alesio et al. identified CHD4 as a 

therapeutic target in colon cancer. In this study, CHD4 depletion was 

found to sensitize colon cancer cells to DNMT inhibitors in 

reactivating hypermethylated genes [52]. Later, depletion of CHD4 in 

acute myeloid leukemia blasts was found to sensitize cells both in 

vitro and in vivo to genotoxic agents daunorubicin and cytarabine [37]. 

More recently, CHD4 was found to mediate epithelial-mesenchymal 

transition in TNBC cells, and silencing of CHD4 expression in these 

cells increase drug sensitivity to cisplatin and PARP1 inhibitor [21].  

 

 

Conclusion and future directions 
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development of new anti-cancer agents.  

Recent progress in understanding the role of CHD4 in response to 

DNA damage, as discussed above, suggests the importance of designing 

effective cancer therapeutic agents that target CHD4. However, due to the 

crucial roles of CHD4 in both promoting and suppressing tumor growth, 

more knowledge of the fundamental biology downstream of CHD4 should 

be investigated. Identifying the binding partners of CHD4 and the 

signaling cascade its involved in will facilitate the generation of models 
revealing the biological functions of the CHD4 to cancer. 

The role of CHD4 in chemotherapeutic response 

  In addition, the expression of CHD4 plays a dual role in sensitizing 

cancer cells to chemotherapeutic agents. This dual role mechanism is 

related to the role of CHD4 in DNA damage repair. However, it is not 

clear whether or not CHD4 drives resistance and how it does this. As 

CHD4 frequently associates with DDR proteins to regulate transcription, 

drugs regulating the activity or the interactions of these proteins may be a 

more selective approach to inhibiting undesirable CHD4 functions in 

cancer cells. Also post-translational modification of CHD4 can modulate 

its function, which offers potentially additional drug targets for novel 

cancer therapies.  

reported  to  modulate  the  expression  of  RAD51,  an  essential  
protein  in  homologous recombination of DNA, by directly binding 

to the RAD51 promoter [30]. And loss of CHD4, even without 

the DNA damage agents, caused DNA damage in glioblastoma cells

 by decreasing the activity of RAD51 [30]. Interestingly, CHD4 was 

also  shown  to  be  recruited  to  DNA  damage  sites  in 
poly(ADP-ribosyl)ation-dependent  manner  during  chromatin 

remodeling  in  response  to  DNA  damage  induction  [31].  Taken 

together,  CHD4  appears  to  have  a  key role  for  DNA repair  and  cell 

survival through multiple mechanisms. 

Interestingly, CHD4 depletion in BRCA2 mutant cells 

promotes resistance to cisplatin by a mechanism independent of HR 

but dependent on RAD18 [53]. Loss of CHD4 in BRCA2 mutant 

PEO1 cells showed enhanced survival against the DNA-damaging 

agents such as the PARP inhibitor Olaparib, the double-strand break-

inducing agent Zeocin, and the DNA polymerase inhibitor aphidicolin 

[53]. These seemingly contradictory results reveal the intricate 

mechanisms of CHD4 involved. To date, no therapeutic agents have 

been reported to exhibit selectivity towards the expression of CHD4. 
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                                                                                                         Therefore, CHD4 may be serve as a potential target for the 

CHD4 and its mutations in cancer progression 

Loss-of-function mutations of CHD4 has been observed in some 

cancer types. Clinical genome-sequencing projects should be conducted to 

provide insight into the prevalence of CHD4 mutations in different cancer 

types and reveal patterns of these mutations. High-throughput screens of 

compounds associated with CHD4 and its mutations may provide new 

insights into the contribution of CHD4 aberrations to tumorigenesis and 

provide new therapeutic avenues.  

Cancers with CHD4 mutations showed loss of CHD4 

expression. Loss of CHD4 expression was found in over 50% of 

gastric and colorectal cancers [38]. In endometrial cancer, CHD4 is 

one of the most frequently mutated tumor suppressor genes and 

typically sustains missense mutations (instead of deletions) [39, 40]. 

Despite the highly frequent mutations of CHD4 detected, the 

functional significance of most CHD4 mutations is unknown. We 

recently showed that two point mutations of CHD4 (R975H and 

R1162W) in ATPase domain in endometrial cancer destabilized the 

CHD4 protein and consequently diminished the function of CHD4, 

which induces a cancer stem cell phenotype to promote cancer 

progression [23]. Miki Yamada et al. reported that missense single 

nucleotide variation p.D140E accelerated the development of cancer 

[41]. Therefore, interpretation of mutations in CHD4 may provide 

tangible benefit for patients with cancer in the near term. 
In  addition  to  its  role  in  cancer  progression,  CHD4 

plays  essential  roles  in  stem cell  differentiation  [14,  42,  43], 

embryonic development [44, 45], striated muscle identity [46], and 

T cell [15] and B cell development [47, 48]. Through whole-exome 

sequencing and web-based gene matching, five individual de novo 

mutations  in  CHD4  were  identified  to  cause  an  intellectual 

disability  syndrome  with  distinctive  dysmorphisms  [49].  CHD4 

depletion  has  been  shown  to  sensitize  cancer  cells  to  some 

chemotherapeutic  agents  [23].  Therefore,  these  loss-of-function 

mutations show potential for  therapeutic targeting. Together,  it  is 

important  to  identify  CHD4  mutations  that  induce  sensitivity  to 

chemotherapeutic  agents.  A  library  of  all  clinically  observed  CHD4 

mutations could be generated by high- throughput cloning in order to 

identify  loss-of-function  mutations  that  confer  sensitivity  to 

chemotherapeutic agents. 
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