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Introduction 
 

It is now well known that cardiac contraction and relaxation processes are 

determined by the coordinated functions of different subcellular 

organelles including sarcolemma (SL), sarcoplasmic reticulum (SR), 

mitochondria (MT) and myofibrils (MF) [1-6]. The SL proteins such as 

voltage-sensitive Ca2+-channels, store-operated Ca2+-channels, Na+- Ca2+ 

exchanger and Na+- K+ ATPase as well as SR proteins including Ca2+-

release channels (ryanodine receptors) and Ca2+-pump ATPase play an 

essential role in the entry and regulation of Ca2+ in cardiomyocytes. On 

the other hand, MF Ca2+-stimulated ATPase and MT oxidative 

phosphorylation are involved in the generation of contractile force and 

ATP production, respectively. It is noteworthy to point out that Ca2+ is 

not only essential for determining the status of cardiac contractile 

function, but is also intimately involved in the maintenance of membrane 

permeability, cellular integrity, and cardiac gene expression [3,7-9]. 

Furthermore, various vasoactive hormones including catecholamines and 

angiotensin II have been demonstrated to exert marked effects on Ca2+-

transport activities in cardiomyocytes [4,10,11]. Thus, defects in any of 

the components of subcellular organelles can be seen to induce Ca2+-
handling abnormalities and contractile dysfunction of the heart [3,9]. 

 

Since the identification of Ca2+-overload as a new principle for the 

pathophysiology of cardiac dysfunction [12-14], several diseases 

including cardiomyopathies due to high levels of circulating 

catecholamines [15-20], genetically-determined heart failure [21-25] as 

well as ischemic heart disease (acute myocardial infarction [26-30] and 

ischemia-reperfusion injury [31-35]) have been shown to be associated 

with the development of intracellular Ca2+-overload. It is generally 

assumed that impaired cardiac performance and functional derangement 

of subcellular organelles in different diseases are the consequence of 

intracellular Ca2+-overload. It should also be pointed out that there are 

other pathophysiologic mechanisms including oxidative stress and 

myocardial inflammation, which have been proposed to induce cardiac 

dysfunction and cellular abnormalities during the development of heart 

disease [36-40]. However, in this article we have attempted to highlight 

the evidence that intracellular Ca2+-overload plays a critical role in the 

genesis of metabolic and cellular defects as well as subcellular remodeling 

for the development of cardiac dysfunction in the heart. Furthermore, the 

present review is focussed on discussion of events for the occurrence of 
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intracellular Ca2+-overload in cardiomyocytes and its consequences for 
inducing myocardial abnormalities.  

Mechanisms for the Development of Intracellular Ca2+-overload  

Although high levels of circulating catecholamines are known to produce 

intracellular Ca2+-overload, several mechanisms have been proposed to 

underlie this phenomenon [9,16,18,20].  These include activation of both 

α-and β-adrenoceptors, stimulation of SL Ca2+-channels, depression in SL 

Na+-Ca2+-exchanger and SL Ca2+-pump ATPase as well as oxidation of 

catecholamines and formation of oxyradicals. It is pointed out that 

interventions which reduce the entry of Ca2+ as well as prevent the 

oxidation of catecholamines and development of oxidative stress have 

been shown to attenuate the catecholamine-induced intracellular Ca2+-

overload [9,12,16,18]. Furthermore, the occurrence of intracellular Ca2+-

overload in genetically-determined cardiomyopathy has been attributed to 

the activation of sympathetic nervous system and increase in Ca2+-influx 

as well as the depression of SL Na+-K+ ATPase and increase in 

intracellular Na+ [9,21]. Agents such as Ca2+-antagonists which prevent 

the entry of Ca2+ in the heart have been reported to exert beneficial effects 

in cardiomyopatheic animals by reducing the development of intracellular 
Ca2+-overload [9,22,25]. 

Several studies have been conducted to demonstrate mechanisms for the 

occurrence of intracellular Ca2+-overload due to acute coronary occlusion 

as well as ischemia-reperfusion injury [9,27,28,30, 33-35]. It has been 

shown that the lack of oxygen in the ischemic myocardium results in 

acidification of the cytoplasm which promotes SL Na+-H+ exchange and 

subsequent entry of Ca2+ upon stimulation of Na+-Ca2+ exchange system. 

Lack of oxygen is also known to increase membrane permeability for Ca2+ 

due to incorporation of free fatty acids and other lipid metabolites in the 

SL membrane. On the other hand, ischemia-reperfusion injury has been 

associated with the release of norepinephrine from the adrenergic nerve 

endings for increasing the entry of Ca2+ in addition to promoting the 

development of oxidative stress.  These changes are known to cause the 

occurrence of intracellular Ca2+-overload as a consequence of their 

dramatic effects on the SL membrane [9,27,33,37,38].  Several other 

vasoactive interventions and proinflammatory agents have also been 

shown to produce Ca2+-handling abnormalities in cardiomyocytes 

[39,40]. It may be noted that reperfusion of the Ca2+-depleted heart with 

Ca2+ containing medium has been shown to exhibit Ca2+-paradox and 

provide a direct evidence for the occurrence of intracellular Ca2+-overload 

[9, 41-44]. A massive increase in myocardial Ca2+content due to 

stimulation of Na+-Ca2+ exchanger in this experimental model was shown 

to be prevented when perfusion of the heart with Ca2+-free medium was 

carried out in the presence of low Na+ [42,43].  High concentrations of 

Ca2+-antagonists were also found to attenuate the increase in myocardial 

Ca2+ in the Ca2+-paradoxic heart by their action on the SL Na+-Ca2+ 

exchange activity [44]. Thus, the Ca2+-paradoxic heart is considered to 

form an excellent model for studying the effects of intracellular Ca2+-
overload [42,43].   

Cardiac Dysfunction and Cellular Damage  

Reperfusion of the Ca2+-depleted hearts with Ca2+-containing medium 

was found to result in loss of contractility, development of contracture, 

damage to ultrastructure and leakage of intracellular enzymes from the 

myocardium [41, 45-48]. The paradoxical effects of Ca2+-deprived hearts 

were reported to occur in different species [49] and were similar to those 

seen during the development of oxygen- paradox in normal hearts [50]. 

The Ca2+-paradox phenomenon was shown to be associated with 

irreversible changes in the surface electrical activity [41] and a marked 

increase in the left ventricular end-diastolic pressure (LVEDP) [41,42,51-

53]. The occurrence of intracellular Ca2+-overload and the increase in 

LVEDP (Table 1) as well as the development of cardiac contracture in the 

Ca2+-paradoxic heart were found to be dependent upon the concentration 
of Ca2+ in the reperfusion medium [42,53,54

 

[Ca2+] mM 

 

Increase in LVEDP 

(mmHg) 
 

 

Myocardial Ca2+ Content  

(µmol/g dry heart wt) 

 

Control 6.8±0.41 3.7±0.39 

0 29.3±2.0* 2.6±0.18* 

0.03 32.2±1.9* - 

0.05 - 4.5±0.49 

0.1 60.7±4.3* 6.9±0.63* 

0.25 - 7.2±0.46* 

0.3 85.3±6.5* - 

1.00 - 13.2±1.07* 

1.25 78.5 ±5.1* 17.6±0.44* 

 

LVEDP in hearts before initiating Ca2+-free perfusion varied between 6 to 8 mmHg. Control hearts were perfused with normal medium containing 1.25 

mM Ca2+ for 35 min without subjecting to Ca2+-free medium preperfusion. Data taken from our papers: Alto LE and Dhalla NS, Am J Physiol - Heart 

Circ Physiol. 237:713-719, 1979; Ozcelikay TA, Chapman D, Elimban V and Dhalla NS, Curr Res Cardiol 1:13-16, 2014. *Significantly (P < 0.05) 
different from control. 

Table 1: Effect of 30 min perfusion with medium containing different concentrations of Ca2+ on myocardial Ca2+ content and left ventricular end 

diastolic pressure (LVEDP) in hearts preperfused for 5 min with Ca2+-free medium. 

Although some investigators failed to demonstrate Ca2+-paradox 

associated changes in isolated cardiomyocytes [55], others have shown 

these alterations upon successive exposure of cardiomyocytes to Ca2+-free 

medium and Ca2+-containing medium [48, 56-58]. Nonetheless, ischemic 

preconditioning has been observed to attenuate the Ca2+-paradox 

associated increase in LVEDP, depression in the left ventricular 

developed pressure and leakage of myoglobin from the heart [59]. The 

presence of low Na+ during perfusion of the heart with Ca2+-free medium 
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was also found to prevent the development of cardiac dysfunction and the 
occurrence of intracellular Ca2+-overload upon reperfusion [41-43]. 

 The ultrastructural changes in the Ca2+-deprived and reperfused hearts 

included swelling of mitochondria and sarcotubular system, occurrence 

of contractile bands, and partial separation of the intercalated disc as well 

as basement membrane from sarcolemma [41,43,45,60]. The alterations 

in ultrastructure of the myocardium were dependent upon the 

concentration of Ca2+ in the reperfusion medium [41,60] and were 

attenuated by reducing the concentration of Na+ during the Ca2+-free 

perfusion phase [41]. These ultrastructural changes are similar to those 

seen in the ischemic heart disease [27-28] and may be a consequence of 

increased activities of cardiac lysosomal hydrolases [61], different 

intracellular proteases [35] and phospholipases [62]. Although the 

occurrence of autophagy has been reported in ischemia-reperfused hearts 

and myocardial infarction [27,28], no information regarding autophagic 

changes in the Ca2+-paradoxic heart is available at present. It is pointed 

out that the activation of NFκB and increased production of TNF-α have 

also been reported to cause cardiac injury due to intracellular Ca2+-

overload [63]. Furthermore, the occurrence of cell death (apoptosis) in the 

Ca2+-paradox heart has been associated with the activation of mitogen-

activated protein kinases (p38 and ERK) as well as different apoptotic 

signal transduction pathways [64]. Thus, the development of cardiac 

dysfunction and cellular damage due to intracellular Ca2+-overload 

appears to be occurring as a consequence of complex and diverse 

mechanisms. 

Mitochondrial Ca2+-overload and Energy Depletion 

It is now well known that intracellular Ca2+-overload in the heart results 

in the development of mitochondrial Ca2+-overload and defects in energy 

production [9,47,65]. Although low concentrations of Ca2+ are required 

for the stimulation of mitochondrial oxidative phosphorylation, high 

concentrations of Ca2+ have been shown to impair the mitochondrial 

function for ATP production [9,53,65, 66]. Perfusion of hearts with Ca2+-

free medium followed by reperfusion with Ca2+-containing medium for 

the induction of intracellular Ca2+-overload was found to be associated 

with depressed mitochondrial state 3 respiration, respiratory control 

index, ADP/O ratio and oxidative phosphorylation without any changes 

in state 4 respiration [53,67]. These alterations were prevented when the 

reperfusion was carried out at low concentrations (0.1-0.5 mM) of Ca2+ 

but were not affected by different antioxidants [55]. The impaired 

mitochondrial function in the Ca2+-paradoxic heart has been associated 

with elevated levels of citric acid cycle intermediates and is considered to 
be due to defects in mitochondrial membrane potentials [68,69].  

A dramatic decrease in high -energy phosphate stores in the heart has been 

shown to occur upon the induction intracellular Ca2+-overload [67,70,71]. 

It may be noted that Ca2+-binding and Ca2+-uptake activities of 

mitochondria, isolated from the Ca2+-paradoxic hearts, were found to be 

increased [72]. Such a change in the mitochondrial Ca2+-transport activity 

was suggested to contribute towards the occurrence of mitochondrial 

Ca2+-overload as it was attenuated when the perfusion with Ca2+-free 

medium was carried out in the presence of low Na+ [72]. It is also pointed 

out that mitochondrial Ca2+-overload may release several cytotoxic 

substances, which may also serve as signals for inducing apoptosis in the 

Ca2+-paradoxic hearts [64]. Thus, it appears that mitochondrial Ca2+-

overload may be involved in cardiac dysfunction and cellular damage in 

the heart by depressing the high energy phosphate stores as well as 

inducing apoptosis in the myocardium. A schematic representation of 

these events is shown in Figure 1.  

 

Figure 1: Schematic representation depicting events for the occurrence of cardiac dysfunction and cellular damage due to mitochondrial Ca2+-overload 
in hearts subjected to intracellular Ca2+-overload. 
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Subcellular Defects and Ca2+-handling Abnormalities 

While the SL membrane is concerned with influx and efflux of Ca2+ for 

maintaining Ca2+-homeostasis in cardiomyocytes, the SR tubular system 

is involved in raising and lowering the concentration of Ca2+, whereas the 

interaction of Ca2+ with MF proteins determines the contractile status of 

the myocardium [3,4]. Reperfusion of Ca2+-deprived hearts with Ca2+-

containing medium has been shown to exert profound effects on the 

activities of different subcellular organelles (Table 2) [73-75].  

         Parameters  Control Hearts Ca2+- overload Hearts 

SL Na+-K+ ATPase 

(µmol Pi/mg protein/hr) 

26.4 ± 1.8 8.2 ± 0.6* 

SL Na+-Ca2+- exchange 

(nmol Ca2+/mg protein/ 2sec) 

6.2 ± 0.21 2.6 ± 0.34* 

SL Ca2+-pump activity 

(nmol Ca2+/mg protein/min) 

12.4 ± 0.92 5.8 ± 0.44* 

SR Ca2+-uptake activity 

(nmol Ca2+/mg protein/5 min) 

269 ± 12.0 81 ± 6.0* 

SR Ca2+-stimulated ATPase 

(µmol Pi/mg protein/5min) 

0.86 ± 0.10 0.21 ± 0.01* 

MF Ca2+-stimulated ATPase 

(µmol Pi/mg protein/hr) 

12.08 ± 0.57 8.40 ± 0.22* 

MF Mg2+-stimulated ATPase 

(µmol Pi/mg protein/hr) 

3.20 ± 0.25 7.21 ± 0.36* 

 

Data are taken from papers: Makino N, Panagia V, Gupta MP, Dhalla NS, Circ Res 63:313-321, 1988; Alto LA, Dhalla NS, Circ Res 48:17-24, 1981; 

Kovacs A, Kalasz J, Pasztor ET et al. Mol Cell Biochem 430: 57-68, 2017. *_ P < 0.05 vs control. 

Table 2:  Effect of intracellular Ca2+-overload on sarcolemmal (SL) and sarcoplasmic reticular (SR) membranes, as well as myofibrillar (MF) ATPase 
activities in perfused hearts 

Depressions in the SL Na+-K+ ATPase, SL Na+-Ca2+ exchanger and SL 

Ca2+-pump ATPase activities in the Ca2+-paradoxic heart can be seen to 

contribute towards the occurrence of intracellular Ca2+-overload in 

cardiomyocytes [73,76,77]. These SL defects were attenuated when the 

perfusion with Ca2+-free medium was carried out in the presence of low 

Na+ (35mM) or at low temperature (210C) [42,78]. On the other hand, the 

density of SL Ca2+-channels was increased upon subjecting the heart to 

Ca2+-paradox and this change was also attenuated by carrying out the 

perfusion with Ca2+-free medium in the presence of low Na+ or at low 

temperature [79]. Furthermore, alterations in the SL membrane were also 

apparent because the activities of β-AR – G-protein – adenylyl cyclase 

complex were observed to be increased [80] and the activity of SL 

Ca2+/Mg2+-ecto ATPAse was decreased [81] in the Ca2+-paradoxic heart. 

Although the status of SL store-operated Ca2+-channels [6] in the Ca2+-

paradoxic heart has not be determined, their participation in inducing 

intracellular Ca2+-overload cannot be ruled out at present. 

The induction of Ca2+-paradox in the heart upon perfusion with Ca2+-free 

medium followed by Ca2+-containing medium was seen to be associated 

with marked depression in the SR Ca2+-uptake and release activities 

[72,74]. These changes in Ca2+-handling by SR were dependent upon the 

concentration of Ca2+ in the reperfusion medium and were attenuated 

when the perfusion with Ca2+-free medium was carried out in the presence 

of low Na+ or at low temperature. Although MF Ca2+-stimulated ATPase 

activity was not altered during the initial (5 min) reperfusion phases of 

Ca2+-paradox development [67], reperfusion of Ca2+-deprived hearts with 

Ca2+-containing medium for 10 min was found to depress the MF Ca2+-

stimulated ATPase activity and increase the MF Mg2+-ATPase activity 

[75]. These alterations were associated with degradation of MF α -myosin 

heavy chain and troponin T proteins in the Ca2+-paradoxic hearts.  The 

activation of proteases such as calpain by elevated levels of intracellular 

Ca2+ in cardiomyocytes is considered to be involved in alterations of the 

SL, SR and MF activities upon reducing their protein content [35]. These 

events for inducing subcellular defects due to the occurrence of 

intracellular Ca2+-overload in the Ca2+-paradoxic hearts are shown in 
Figure 2.  

It should be recognized that Ca2+-handling abnormalities in SL and SR 

due to intracellular Ca2+-overload may also be induced by changes in the 

phospholipid composition of these membranes [62]. It is also noteworthy 

that similar Ca2+-handling defects have also been observed in heart failure 
and ischemic heart disease [27, 28, 82-85]. 

Alterations in cardiac Gene Expression 

In view of the role of cardiac gene expression in maintaining the function 

of different subcellular organelles in the heart [27,28, 85], it has been 

suggested that subcellular remodeling in the Ca2+-paradoxic heart may be 

due to changes in gene expression for different subcellular proteins 

[9,73,74]. Accordingly, subcellular remodeling due to intracellular Ca2+-

overload may be occurring as a consequence of both the activation of 

calpain and the depression in mRNA levels for different cardiac genes 
(Figure 2). 
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Figure 2: Development of cardiac dysfunction due to defects in subcellular organelles as a consequence of increased proteolysis and 
depressed gene expression in hearts subjected to intracellular Ca2+-overload. 
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Figure 3:  Dependence of changes in mRNA levels for calpain-1 and 2 upon Ca2+concentrations in the reperfusion medium. These hearts were 

preperfused with Ca2+-free medium for 5 min before reperfusion for 30 min. The data are taken from our paper Ozcelikay AT, Chapman D, 

Elimban V, Dhalla NS, Curr. Res. Cardiol.1:13-16, 2014. *_ P<0.05 vs control (C). 

Furthermore, it was demonstrated that depressions in gene expression for 

SL Na+-Ca2+ exchanger as well as different isoforms of SL Na+- K+ 

ATPase protein due to Ca2+-paradox were dependent upon the 
concentration of Ca2+ in the reperfusion medium (Figure 4) [54].  

 

 

Figure 4: Dependence of changes in mRNA levels for sarcolemmal Na+-Ca2+ exchanger and different isoforms of  Na+ K+ ATPase upon Ca2+ 
concentrations in the reperfusion medium. These hearts were perfused for 5 min with Ca2+-free medium before reperfusion for 30 min. 
The data are taken from our paper Ozcelikay AT, Chapman D, Elimban V, Dhalla 

Likewise, alterations in mRNA levels for SR Ca2+-pump protein and Ca2+-release channels as well as MF α- and β- myosin proteins in the Ca2+-
paradoxic heart were observed to be dependent upon the concentration of Ca2+ in the reperfusion medium (Figure 5) [54].  

* 

* 
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Figure 5: Dependence of changes in mRNA levels for sarcoplasmic reticular SERCA2a and ryanodine receptor (Ca2+-release channel) as well as α- and β- 
myosin heavy chain upon Ca2+ concentrations in the reperfusion medium. These hearts were perfused with Ca2+-free medium before reperfusion for 
30min. The data are taken from our paper Ozcelikay AT, Chapman D, Elimban V, Dhalla NS, Curr. Res.  Cardiol.1:13-16, 2014. *_ P<0.05 vs control (C). 

These observations provide evidence for a defect in the formation of 

subcellular proteins resulting in subcellular remodeling due to 

intracellular Ca2+-overload. Thus, cardiac genes can be seen as excellent 

molecular targets for the development of novel interventions for the 

improved therapy of heart disease. 

Conclusion 

From the forgoing discussion, it is evident that two major mechanisms, 

namely energy depletion due to mitochondrial Ca2+-overload and 

subcellular remodeling due to increased proteolysis and reduced gene 

expression, are likely to explain the development of cellular damage, 

metabolic alterations and cardiac dysfunction due to intracellular Ca2+-

overload. It is emphasized that the occurrence of intracellular Ca2+-

overload in heart disease may become apparent due to increase in Ca2+ 

entry as a consequence of depressions in SL Na+-K+ ATPase and Na+-Ca+ 

exchange activities as well as increase in Ca2+-channel density in the SL 

membrane. Depressions in SL Ca2+-pump ATPase as well as SR Ca2+-

uptake and SR Ca2+-release activities in heart disease can also be seen to 

participate in the development of intracellular Ca2+-overload. Since the 

observed changes in subcellular Ca2+- handling due to intracellular Ca2+-

overload are similar to those seen in failing hearts and thus may be 

responsible for the development of cardiac dysfunction in different types 

of heart types of heart disease. It may be noted that the SL and SR defects 

during the development of heart disease are also induced by prolonged 

exposure of the heart to elevated levels of vasoactive hormones such as 

catecholamine’s and angiotensin II in the circulation. The accumulation 

of Ca2+ by mitochondria under conditions of intracellular Ca2+-overload 

may be beneficial at initial stages but the resultant mitochondrial Ca2+-

overload can be seen to impair ATP production and promote the 

development of cellular damage. Thus, different interventions which can 

attenuate the Ca2+ entry into cardiomyocytes, reduce the occurrence of 

mitochondrial Ca2+-overload, inhibit the activation of proteases and 

promote cardiac gene expression can be seen to exert beneficial effects in 

preventing the development as well as progression of heart disease. 
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