Trends in Peripartum Serum N-terminal Brain Natriuretic Peptide (NT-proBNP) levels in Patients with Hypertensive Gestational Syndromes

Valerie Barta1, Nimesh Shah1, Stephanie Baum1, Christina Zottolla2, Jason Schneider2, Sarah Werner2, Maria V. DeVita1*, Eran Bornstein3

1Division of Kidney and Hypertension, Lenox Hill Hospital-Northwell Health/Zucker School of Medicine, New York, NY 10075, USA
2Department of Obstetrics and Gynecology, Lenox Hill Hospital-Northwell Health/Zucker School of Medicine, New York, NY 10075, USA
3Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Lenox Hill Hospital-Northwell Health/Zucker School of Medicine, New York, NY 10075, USA

*Corresponding Author: Maria V. Division of Kidney and Hypertension, Lenox Hill Hospital-Northwell Health/Zucker School of Medicine, New York, NY 10075, USA

Received Date: April 07, 2021; Accepted Date: May 06, 2021; Published Date: May 11, 2021

Citation: Valerie Barta, Nimesh Shah, Stephanie Baum, Christina Zottolla, Jason Schneider, et al. (2021) Trends in Peripartum Serum N-terminal Brain Natriuretic Peptide (NT-proBNP) levels in Patients with Hypertensive Gestational Syndromes. J. Heart and Vasculature, 1(3); doi: 10.31579/jhv-2021/014

Copyright: © 2021 Maria V. DeVita, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Pregnancy yields physiologic changes to the cardiac circulatory system and alterations in volume status. Since serum NT-proBNP levels rise in response to cardiac ventricular myocyte stretch, it is not surprising that higher NT-proBNP levels are noted throughout pregnancy even in normotensive pregnancies versus non-pregnancy. Patients with hypertensive disorders of pregnancy have been shown to have higher NT-proBNP levels compared to normal pregnancy. We examined the NT-proBNP levels immediately before and after delivery in non hypertensive women and those with hypertensive gestational syndromes including chronic hypertension (cHTN), gestational hypertension (GH) and preeclampsia (PEC).

A total of 97 patients were enrolled. Thirty-five normotensive controls, 14 in the cHTN group, 29 in the GH group and 19 in the PEC group. The mean antepartum NT-proBNP level in the normotensive control group was 65.4pg/dL, 82.1pg/dL in cHTN group, 64.8pg/dL in the GH group and 133.3pg/dL in the PEC group. There was a trend towards higher antepartum NT-proBNP levels in patients with cHTN and PEC as compared to controls. The mean postpartum NT-proBNP level in the control group was 209.2pg/dL, 207.7pg/dL in cHTN group, 259.5pg/dL in the GH group and 198.8pg/dL in the PEC group. We found no significant differences in antepartum (p=0.47) or postpartum (p=0.32) NT-proBNP levels between patients in the normotensive control group, cHTN group, GH group or the PEC group. However, the mean antepartum NT-proBNP levels for all groups combined was 90pg/dL (5-988pg/dL). The mean postpartum NT-proBNP was significantly more elevated at 218.5pg/dL (11-1151pg/dL). The change in NT-proBNP level from antepartum to postpartum was significant across groups (p=0.01). The increase in NT-proBNP was significantly larger in the gestational HTN group compared to the PEC group (194.7pg/dL vs. 65.5pg/dL; respectively; p=0.004), as the antepartum level was already markedly elevated in the PEC group. A statistically significantly increase in postpartum NT-proBNP was also noted in normotensive controls compared to PEC (mean rise 143.9pg/dL vs. 65.5pg/dL, respectively; p=0.0081). Physiologic increases in serum NT-proBNP may be exaggerated in certain patients with hypertensive disorders of pregnancy. It is thought that elevated NT-proBNP levels in HGS represent cardiac strain due to the failure of the maternal cardiovascular system to adapt to the demands of pregnancy. When comparing antepartum to postpartum NT-proBNP levels in our 4 designated groups there were no differences. However collectively, post partum levels were elevated compared to antepartum levels showing that this 24-48 hour period is very dynamic in terms of cardiac strain. This difference was most significant in the patients with gestational hypertension and preeclampsia as compared to normal controls and chronic hypertensives. Examining the NT-proBNP levels within this narrow window has not been previously described. More research is needed to elucidate whether there is predictive value of NT-proBNP immediate antepartum or postpartum that we can use to aid in the often-difficult diagnosis of exacerbation of chronic or gestational hypertension versus developing preeclampsia.

Keywords: NT-proBNP; preeclampsia; gestational hypertension

INTRODUCTION

Pregnancy is characterized by complex physiological changes of the cardiovascular system including a 40-50% increase in blood volume which increases left ventricular mass, left ventricular end diastolic pressure and cardiac output [1]. Interstitial water and sodium are increasingly retained towards the end of pregnancy and there is a 14% decrease in serum colloid osmotic pressure, contributing to extracellular volume overload. [2] During labor up to 500mL of blood from the uterus returns to the systemic circulation with each uterine contraction causing cardiac output to surge [3-6]. This postpartum water and sodium shift back into circulation, further contributes to cardiac load. Since, serum
NT-proBNP levels rise in response to cardiac ventricular myocyte stretch, these peripartum cardiovascular stressors explain findings of higher NT-proBNP levels throughout pregnancy even in normotensive pregnancies versus non-pregnancy. [7,8] Levels vary by gestational week, with most studies suggesting the highest levels are seen during the immediate peripartum and postpartum periods [6, 7]. Patients with hypertensive disorders of pregnancy have been shown to have higher NT-proBNP levels compared to normal pregnancy, and this is especially true in the setting of preeclampsia (PEC) [8-12]. NT-proBNP has not been shown to predict the future onset of preeclampsia early in pregnancy [13]. Studies have shown that levels rise later in the course of a preeclamptic pregnancy suggesting the high levels of NT-proBNP in this setting are part of a system to counteract ventricular pressure and volume overload by inducing natriuresis, diuresis, vasodilation and inhibition of the renin-angiotensin-aldosterone system [14, 15].

Hypertensive gestational syndromes (HGS) include chronic hypertension (cHTN), gestational hypertension (GH) and preeclampsia (PEC). The American College of Obstetrics and Gynecology (ACOG) [16] defines cHTN as BPs >140/90 at <20 weeks gestation, GH as BPs >140/90 at occurring > 20 weeks gestation. PEC is defined blood pressure >140/90mmHg (measured twice within 4hrs) plus at least one of the following: proteinuria, kidney injury, liver injury, thrombocytopenia, pulmonary edema, headache, scotoma. End organ damage (other than proteinuria) and severe range blood pressure SBP >/=160mmHg or DBP >/= 110mmHg characteristic PEC as having severe features. HELLP syndrome also falls under this category, defined as hypertension, elevated liver enzymes and low platelets. PEC and HELLP syndrome cause significant maternal and fetal morbidity, mortality and prolonged hospitalization. If undiagnosed, they can evolve into eclampsia with seizure, stroke and maternal and/or fetal death. PEC is well-defined but often difficult to diagnosis when superimposed on cHTN, GH or in those with underlying proteinuria from chronic kidney disease, diabetes or obesity. We were interested in investigating if NT-proBNP levels differed significantly between patients with HGS during their delivery coinciding with the time of maximal cardiovascular strain.

Material and Methods
We assessed NT-proBNP elevations induced by cHTN, GH and PEC in the immediate peripartum period. We sampled peripartum serum NT-proBNP levels, drawn once within 24hrs antepartum and again within 24hrs postpartum, of healthy control patients, compared to those of patients with cHTN, GH and PEC. We hypothesized that patients with hypertensive disorders of pregnancy will have higher peripartum NT-proBNP levels as compared to normal controls, due to hemodynamic stressors of labor.

This was a prospective study conducted from April 2018 to February 2019 at Lenox Hill Hospital Northwell Health, New York, NY. Informed consent was obtained from patients for two separate blood draws of serum NT-proBNP levels during their hospitalization for delivery. Patient data including age, race, parity, Body Mass Index (BMI), gestational age at delivery, family or personal history of preeclampsia, route of delivery, pre-pregnancy weight, serum creatinine, aspartate and alanine transaminases (AST,ALT), hemoglobin, platelet count, uric acid, lactate dehydrogenase, urine analysis, urine protein to creatinine ratio were collected from electronic medical records. All patient data was processed in the HIPPA compliant REDCAP data storage system.

Inclusion criteria were all pregnant individuals between the ages of 18 to 55 admitted at LHH for their delivery at term as defined as gestational week 32 to 42 as normal (control) and/or with pregnancy related hypertensive disorders PEC, GH and CH, as defined above. Patients with known heart failure, heart disease or prior cardiac surgery were excluded, as were patients with COPD, history of pulmonary embolism, diabetes mellitus, severe autoimmune disease, anti-phospholipid syndrome and those with cognitive impairment or otherwise unable to provide informed consent. Patients who delivered pre-term, or with intrauterine fetal death not associated with hypertensive disorder of pregnancy were also excluded.

Chronic hypertension was defined as requiring antihypertensive medications prior to conception, or systolic blood pressure (SBP) >/=140 mmHg or diastolic blood pressure (DBP) >90 mmHg known to predate conception or detected before 20 weeks gestation. Gestational hypertension was defined as SBP >140 mmHg or DBP >90 mmHg on two or more measurements at least four hours apart, occurring after 20 weeks of gestation, without concomitant proteinuria. Preeclampsia was defined as the new onset of hypertension (SBP >140mmHg and/or diastolic blood pressure >90 mmHg on two measurements at least 4 hours apart) plus proteinuria (24hr urine protein >/= 300mg, urine protein to creatinine ratio >/= 0.3 or 2+ proteinuria on urine dipstick if former measurements unavailable, without a concomitant urinary tract infection or with signs of severe PEC including thrombocytopenia, renal impairment, elevated liver enzymes, pulmonary edema, unexplained headache not relieved by medication or visual disturbances [16].

Antepartum blood samples of 5-10 ml were obtained using standard sampling tubes within 24hrs prior to delivery, postpartum blood samples were drawn within 24hrs after delivery. Serum NT-proBNP analyzed by an electro chemiluminescence immunoassay “ECLIA” at our institute’s inpatient laboratory. When used with the recommended cut-offs the Elecsys proBNP II STAT assay used yields negative predictive values ranging from 97.8 to 100% depending on age and gender with analytical range of 5–35000pg/dl.

The protocol of the study was approved by the Northwell Health Institutional Review Board (IRB) committee and written informed consent was sought from all study participants.

Statistical methods
The primary objective of the study was to determine differences in NT-proBNP level associated with hypertensive disorder of pregnancy namely cHTN, GH and PEC, as compared to normal control pregnancy. Predictor and baseline variables includes but not limited to NT-proBNP level, patient’s age, race, parity, BMI and gestational age at delivery, family or personal history of preeclampsia, route of delivery, pre-pregnancy weight, serum creatinine, aspartate and alanine transaminases (AST,ALT), hemoglobin, platelet count, uric acid, lactate dehydrogenase, urine analysis, and urine protein to creatinine ratio.

A crude comparison of hypertensive disorders of pregnancy was performed using univariate multinomial logistic regression. Once the confounders are identified (p < 0.05), the outcome was analyzed using multivariate multinomial logistic regression with backward elimination. Analysis was conducted using SAS v. 9.4 (SAS Institute, Inc., Cary, NC). Comparisons of the demographic factors of the patients in the different groups were made using analysis of variance (ANOVA), the χ2 test, and the extended median test, where appropriate. For comparing levels of NT-pro-BNP in the different groups, the Mann–Whitney U-test was used. A p-value of < 0.05 was accepted as statistically significant.

Assuming that pregnancy induced hypertensive disorders group will have higher NT-pro-BNP level, and the log-scale common SD of 0.90, the Bonferroni adjusted two-sample t-test with 0.01 two-sided significance level will have 80% power to detect the difference between these log-scale means when the sample size is 30 subjects per group. Based on above justification we aimed to enroll 30 patients in each group in various category of hypertensive disorders as well as normal control pregnancy (total 120 subjects).

Results
A total of 97 patients were enrolled. Thirty-five normotensive controls, 14 in the cHTN group, 29 in the GH group and 19 in the PEC group. Four patients in each of the cHTN and GH group, and 6 in the normotensive...
group developed peripartum superimposed PEC. These patients were therefore analyzed in the PEC group, resulting in 29 normotensive controls, 10 patients with cHTN, 25 with GH and 33 in the PEC group. The mean gestational age of patients was 38.6 weeks. Serum creatinine (Scr) ranged from 0.37-1.10 mg/dL, (mean 0.63 mg/dL). The mean time from antepartum serum blood draw to delivery was 9.28 hours (SD +/- 6.8), mean time from delivery to postpartum draw was 12.9 hours (SD +/- 6.5). Oral antihypertensive requirements (labetalol, nifedipine IR, nifedipine ER) during hospitalization included 3/10 (30%) chronic hypertensives, 4/25 (16%) in GH group and 16/33 (48.5%) of preeclamptics. 9/33 (27.3%) preeclamptics required IV antihypertensives (IV labetalol, IV hydralazine) for severe range blood pressures. Vaginal delivery was the most common delivery mode in each group except for the normotensive group in which 18/29 (62%) of patients had caesarian sections. Ten of the 33 preeclamptics patients (33%) exhibited severe features (Table 1).

The mean antepartum NT-proBNP level in the normotensive control group was 65.4pg/dL, 82.1pg/dL in cHTN group, 64.8pg/dL in the GH group and 133.3pg/dL in the PEC group. Although there was a trend towards higher antepartum NT-proBNP levels in patients with cHTN and PEC as compared to control or GH groups, it was not statistically significant (p > .05) The mean postpartum NT-proBNP level in the control group was 209.2pg/dL, 207.7pg/dL in cHTN group, 259.5pg/dL in the GH group and 198.8pg/dL in the PEC group. We found no significant differences in antepartum (p=0.47) or postpartum (p=0.32) NT-proBNP levels between patients in the normotensive control group, cHTN group, GH group or the PEC group. (Table 2)

The mean antepartum NT-proBNP levels for all groups combined was 90.8pg/dL, 65.9pg/dL in cHTN group, 120.5pg/dL in the GH group and 209pg/dL in the PEC group. Although there was a trend towards higher antepartum NT-proBNP levels in patients with cHTN and PEC as compared to control or GH groups, it was not statistically significant (p > .05) The mean postpartum NT-proBNP level in the control group was 209.2pg/dL, 207.7pg/dL in cHTN group, 259.5pg/dL in the GH group and 198.8pg/dL in the PEC group. We found no significant differences in antepartum (p=0.47) or postpartum (p=0.32) NT-proBNP levels between patients in the normotensive control group, cHTN group, GH group or the PEC group. (Table 2)

The mean antepartum NT-proBNP level in the normotensive control group was 65.4pg/dL, 82.1pg/dL in cHTN group, 64.8pg/dL in the GH group and 133.3pg/dL in the PEC group. Although there was a trend towards higher antepartum NT-proBNP levels in patients with cHTN and PEC as compared to control or GH groups, it was not statistically significant (p > .05) The mean postpartum NT-proBNP level in the control group was 209.2pg/dL, 207.7pg/dL in cHTN group, 259.5pg/dL in the GH group and 198.8pg/dL in the PEC group. We found no significant differences in antepartum (p=0.47) or postpartum (p=0.32) NT-proBNP levels between patients in the normotensive control group, cHTN group, GH group or the PEC group. (Table 2)

There was no significant findings on multivariate analysis.

Discussion

Physiologic increases in serum NT-proBNP may be exaggerated in certain patients with hypertensive disorders of pregnancy [17, 18]. It is thought that elevated NT-pro BNP levels in HGS represent cardiac strain due to the failure of the maternal cardiovascular system to adapt to the demands of pregnancy [19-21]. In PEC this failure to adapt is most severe [22]. The rate of preeclampsia in the US increased by 25% between 1987 and 2004 [23]. The incidence of severe PEC increased nearly 7 fold comparing births from 1980 to 2003 [24] highlighting the importance of this issue. NT-proBNP has been tested as an early predictor for the later development of PEC in high risk pregnant women but first and second trimester levels do not consistently correlate with those who go on to develop PEC later in pregnancy. Using NT-proBNP in conjunction with other clinical markers as a diagnostic rather than predictive tool for PEC is less clear. We looked at immediate ante and postpartum NT-pro BNP levels in normal pregnancy, cHTN, GH and PEC to investigate trends in peripartum cardiac strain. When comparing antepartum to postpartum NT-proBNP levels in our 4 designated groups there were no differences. However collectively, post partum levels were elevated compared to antepartum levels showing that this 24-48 hour period is very dynamic in terms of cardiac strain.

Conclusion

Gestational hypertensive disorders are increasingly prevalent in the United States due to increases in co-morbidities, maternal age and infertility interventions. This is the first study to prospectively assess the
NT-proBNP levels of pregnant normotensives, chronic hypertensives, gestational hypertensives and preeclampsias pre and post-delivery during the period of maximal pregnancy-related cardiovascular strain. Our data show all groups had higher antepartum NT-proBNP levels compared to non-pregnancy. There was a trend towards higher antepartum NT-proBNP in those with chronic hypertension which we think may be secondary to adaptations to longstanding elevated blood volume and pressure. Those with preeclampsia showed an even larger trend towards higher antepartum NT-proBNP which may be an indicator of impending preeclampsia. More research is needed to elucidate whether there is a negative predictive value NT-proBNP cut off in immediate antepartum NT-proBNP level or degree of rise in postpartum NT-proBNP that we can use to aid in the often difficult diagnosis of exacerbation of chronic or gestational hypertension versus developing preeclampsia.

Limitations

Given that our study was a small population, some of our findings, in particular the trend towards higher mean postpartum NT-proBNP levels in our PEC cohort may not have reached statistical significance due to sampling error and other confounding factors. Another important note is that 62% of our normotensive controls underwent elective cesarean sections, compared to 20% in the cHTN group, 40% in GH and 39.4% in the PEC group. We prioritized minimizing interventions in this sensitive study population and as such, we enrolled more normotensive patients with planned C-sections because per hospital protocol they already required at least one blood draw. Higher peripartum NT-proBNP levels in the normotensive groups may have been related to intra-op cardiovascular stress, anesthesia, intravenous fluids and blood products.

While using NT-proBNP is a validated marker for cardiac strain, it can be affected by other factors that need to be considered, particularly in pregnancy. Obesity, infection and intrauterine growth restriction can increase NT-proBNP levels [15, 17 and 18]. Lev-Sagie et al [26] reported an increase in NT-proBNP in women receiving epidural pain relief versus not. A study from 2007 by Tihtonen et al (27) published in AJOG found higher levels of NT-proBNP in patients with preeclampsia who were treated with antihypertensives versus not. It is unclear whether these factors cause an independent rise in NT-proBNP regardless of the patient’s hemodynamic status or whether the cardiovascular strain conferred by some of these conditions is what drives the rise in NT-proBNP. In those patients with severe PEC and kidney impairment, the reduced clearance of NT-proBNP may lead to exaggerated elevations in peripartum levels.

References

This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here: Submit Manuscript

DOI: 10.31579/jhv-2021/014

Ready to submit your research? Choose Auctores and benefit from:

- fast, convenient online submission
- rigorous peer review by experienced research in your field
- rapid publication on acceptance
- authors retain copyrights
- unique DOI for all articles
- immediate, unrestricted online access

At Auctores, research is always in progress.

Learn more https://www.auctoresonline.org/journals/journal-of-heart-and-vasculature