Safety of Extracorporeal Shockwave Myocardial Revascularization (ESMR) in Patient with a Mechanical Prosthetic Valve: A Case Report.

Gianluca Alunni 1,*, Salvatore D’amico 2, Dario Celentani3, Carlo Alberto Biolè 1, Alessandro Andreis4, Mauro Rinaldi Prof5, Marra Sebastiano2

1Department of Cardiology, City of Health and Science of Turin, Turin, Italy
2Villa Maria Hospital, Turin, Italy.
3Corresponding Author: Gianluca Alunni, City of Health and Science, 10100 Turin, Italy. Tel: +390116335945 Email: a.gianluca1@virgilio.it

Received date: July 13, 2018; Accepted date: August 03, 2018; Published date: August 08, 2018.


Copyright: ©2018. Gianluca Alunni. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Keywords: refractory angina; shock wave therapy; myocardial ischemia

Introduction and highlights

The number of patients with refractory angina without revascularization options is increasing. The prognosis and the quality of life in these patients is poor and maximal medical therapy is not enough for symptoms relieve. According to the last American College of Cardiology/American Heart Association (ACC/AHA) guidelines on the management of chronic stable angina, the objective of the treatment should be the resolution of angina attacks, the reduction of the numbers of hospitalizations and the carrying out of normal daily activities without symptoms [1-6].

Extracorporeal Shockwave Myocardial Revascularization therapy (ESMR) is a non-invasive treatment and several studies have demonstrated its safety and its efficacy in patients with refractory angina (RA) to improve myocardial perfusion and exercise capacity reducing symptoms by the application shockwaves (SW) on the culprit ischemic area of the heart under echocardiographic guidance [7-26]. Shockwaves consist of low-intensive acoustic energy artificially generated by discharging of a high voltage spark under water by a generator designed to address the clinical anatomical requirements of the chest cavity. Several treatment sessions are required. The aim of this treatment is former to induce vasodilatation and latter to induce neovascularization from the healthy area to the ischemic area [27-37].

But, actually, there are no data about the safety of ESMR in patients with a mechanical prosthetic valve.

We would report about a 64-year-old man with coronary artery disease (CAD) and refractory angina pectoris despite maximally tolerated medical therapy and after percutaneous coronary intervention (PCI) and with a prosthetic aortic valve and aortic tube.

The patient received extracorporeal shockwave myocardial revascularization therapy without any complication during or after treatment.

1. Case presentation

64-years-old male patient with coronary artery disease debuted in 2002 with an anterior ST-elevation myocardial infarction (STEMI) treated by percutaneous coronary intervention (PCI) on medial left anterior descending artery (LAD) with implantation of a Bare Metal Stent (BMS).

In 2004, for the evidence of the stenosis of the bicuspid aortic valve and an ascending aorta aneurysm, substitution of the aortic valve and the ascending aorta with a mechanical valve attached to a Dacron tube graft (St. Jude 25 mm + 28 mm) was performed.

In 2011, for new evidence of stress angina, PCI with a drug eluting stent (DES) implantation of the proximal RCA was performed.

In 2013, for stress angina recurrence, a myocardial single-photon emission computed tomography (SPECT) with pharmacological stress (Dipyridamole) was performed, with the evidence of modest inducible ischemia in inferior cardiac wall (SR3 3, SSS 9, SDS 6), without CAD progression at the coronary angiography.

For this reason, in 2014, we decided to treat the patient with shockwaves therapy.

2. ESMR protocol

We locate the area to treat by documenting inducible ischemia at the stress myocardial SPECT. The ESMR were applied with a commercially available cardiac shock wave generator system (Cardiospect TM, Medispec, Germantown, MD) under echocardiographic guidance (Figure 1A and B): through a cardiac ultrasound imaging system, we look at this area and these measurements are calibrated into the shockwave applicator head to ensure the position of the focal treatment zone, so using an electrocardiographic R-wave gating, shockwaves are delivered through the applicator to the sub-endocardial myocardium of the ischemic area. We applied a low energy of shockwaves (0.09 ml/mm², ≈10% of the energy for the lithotripsy treatment).
In conclusion, we treated by ESMR a patient with refractory angina and with mechanical prosthetic aortic valve and tube, without any sign of complication or malfunction of the cardiac device in acute or in further years. The Author(s) declare(s) that there is no conflict of interest.

References


Last echocardiographic study was performed in January 2018 and showed a prosthetic valve with a normal function and position, PG was 12/8 mmHg, V max was 1.7 m/sec. Prosthetic tub was regular without dehiscence (Figure 3).

4. Conclusion

In conclusion, we treated by ESMR a patient with refractory angina and with mechanical prosthetic aortic valve and tube, without any sign of complication or malfunction of the cardiac device in acute or in further years. The Author(s) declare(s) that there is no conflict of interest.
