Curious Chloride (CmCl$_3$) and Titanic Chloride (TiCl$_4$)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules for Cancer Treatment and Cellular Therapeutics

Alireza Heidari
Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA.

Corresponding Author: Alireza Heidari– Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA.

E-mail: Scholar.Researcher.Scientist@gmail.com

Received date: August 28, 2018; Accepted date: September 05, 2018; Published date: September 07, 2018.

Citation for this Article: Alireza Heidari. Curious Chloride (CmCl$_3$) and Titanic Chloride (TiCl$_4$)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules for Cancer Treatment and Cellular Therapeutics. J. Cancer research and therapeutic Interventions. Doi: 10.31579/2640-1053/005

Copyright: © 2018 Alireza Heidari. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract
In the current study, we study Curious Chloride (CmCl$_3$) and Titanic Chloride (TiCl$_4$)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules incorporation into the Nano Polymeric Matrix (NPM) by immersion of the Nano Polymeric Modified Electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations.

Keywords
Curious Chloride (CmCl$_3$); Titanic Chloride (TiCl$_4$); Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI); Nano Molecules

Introduction
In the current study, we study Curious Chloride (CmCl$_3$) and Titanic Chloride (TiCl$_4$)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules incorporation into the Nano Polymeric Matrix (NPM) by immersion of the Nano Polymeric Modified Electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. The trivial name for some curium compounds can be either curous or ‘curious’, so curium trichloride becomes curious chloride. However the only curious property it has is that it's sufficiently radioactive that a solution, if concentrated enough, will boil spontaneously after a while. In a similar way, titanium compounds can be ‘titanic’, so we get the wonderfully named titan chloride, TiCl$_4$. It’s also interesting to know that in the titanium industry, TiCl$_4$ is known as ‘tickle’. Furthermore, curium oxides are called ‘curates’, so the titanium compound would be Titan Curate, and since curium can have more than one valency we could end up with Curious Curates. In this regard, the development of Chemical Modified Electrodes (CEMs) is at present an area of great interest. CEMs can be divided broadly into two main categories; namely, surface modified and bulk modified electrodes. Methods of surface modification include adsorption, covalent bonding, attachment of polymer Nano films, etc. Polymer Nano film coated electrodes can be differentiated from other modification methods such as adsorption and covalent bonding in that they usually involve multilayer as opposed to monolayer frequently encountered for the latter methods. The thicker Nano films imply more active sites which lead to larger analytical signals. This advantage coupled with other, their versatility and wide applicability, makes polymer Nano film modified electrodes particularly suitable for analytical applications [1–27].

Martials, Research Methods and Experimental Techniques
Electrochemical polymerization offers the advantage of reproducible deposition in terms of Nano film thickness and loading, making the immobilization procedure of a metal–based electrocatalyst very simple and reliable for Curious Chloride (CmCl$_3$) and Titanic Chloride (TiCl$_4$)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules–encapsulating Carbon nanotubes incorporation into the Nano Polymeric Matrix (NPM) by immersion of the Nano Polymeric Modified Electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. Also, it must be noticed that the nature of working electrode substrate in electropreparation of polymeric Nano film is very important, because properties of polymeric Nano films depend on the working electrode anti–cancer Nano materials. The ease and fast preparation and obtaining a new reproducible surface, the low residual current, porous surface and low cost of Multi–Walled Carbon Nanotubes (MWCNTs) paste are some advantages of Carbon Paste Electrode (CPE) over all other solid electrodes [28–92].

Results and Discussion
On the other hand, it has been shown that, macrocyclic complexes of Curious Chloride (CmCl$_3$) and Titanic Chloride (TiCl$_4$)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules–encapsulating Carbon nanotubes are interested as modifying agents because in basic media Curious Chloride (CmCl$_3$) and Titanic Chloride (TiCl$_4$)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules–encapsulating Carbon nanotubes redox centers show high catalytic activity towards the oxidation of small organic anti–cancer Nano compounds.
The high-valence species of Curious Chloride (CmCl$_3$) and Titanic Chloride (TiCl$_3$)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules–encapsulating Carbon nanotubes seem to act as strong oxidizing agents for low–electroactivity organic substrates. 1,2–Dioxetane (1,2–Dioxacyclobutane), 1,3–Dioxetane (1,3–Dioxyacyclobutane), DDMDD Hydantoin and Sulphide as the anti–cancer organic intermediate products of methanol oxidation as well as formic acid, is important to investigate its electrochemical oxidation behavior in Curious Chloride (CmCl$_3$) and Titanic Chloride (TiCl$_3$)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules–encapsulating Carbon nanotubes incorporation into the Nano Polymeric Matrix (NPM) by immersion of the Nano Polymeric Modified Electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations [93–196].

Conclusions, Perspectives, Useful Suggestions and Future Studies

In this work, we decided to combine the above mentioned advantageous features for the aim of Curious Chloride (CmCl$_3$) and Titanic Chloride (TiCl$_3$)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules–encapsulating Carbon nanotubes incorporation into the Nano Polymeric Matrix (NPM) by immersion of the Nano Polymeric Modified Electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. Furthermore, in this research, we prepared poly Nano films by electropolymerization at the surface of Multi–Walled Carbon Nanotubes (MWCNTs) paste electrode. Then, Curious Chloride (CmCl$_3$) and Titanic Chloride (TiCl$_3$)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules–encapsulating Carbon nanotubes were incorporated into the Nano Polymeric Matrix (NPM) by immersion of the Nano Polymeric Modified Electrode (NPME) in a solution. The modifier layer of Curious Chloride (CmCl$_3$) and Titanic Chloride (TiCl$_3$)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules–encapsulating Carbon nanotubes at the electrode surface acts as a Nano catalyst for the treatment of human cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations. Suitability of this Curious Chloride (CmCl$_3$) and Titanic Chloride (TiCl$_3$)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules–encapsulating Carbon nanotubes–modified polymeric Multi–Walled Carbon Nanotubes (MWCNTs) paste electrode toward the electrocatalytic treatment of human cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations in alkaline medium at ambient temperature was studied and investigated.

References

18. Alireza Heidari, “Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca$^{2+}$), Iron (II) (Fe$^{2+}$), Magnesium (Mg$^{2+}$), Phosphate (PO$^{4-}$) and Zinc (Zn$^{2+}$) in Apricot Using High–Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques”, J Biomol Biostat 7: 292, 2016.
19. Alireza Heidari, “Spectroscopy and Quantum Mechanics of the Helium Dimer (He₂⁻), Neon Dimer (Ne₂⁻), Argon Dimer (Ar₂⁻), Krypton Dimer (Kr₂⁻), Xenon Dimer (Xe₂⁻), Radon Dimer(Rn₂⁻) and Ununoctium Dimer (Uuo₂⁻) Molecular Cations”, Chem Sci J 7: e112, 2016.

27. Alireza Heidari, “Discriminate between Antibacterial and Non–Antibacterial Drugs Artificial Neutral Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors”, J Heavy Met Toxicity Dis. 1: 2, 2016.

111. Alireza Heidari, “Vibrational Deciherz (dHz), Centihertz (cHz), Millihertz (mHz), Microherzt (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attoherz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, International Journal of Biomedicine, 7 (4), 335–340, 2017.

116. Alireza Heidari, “Vibrational Decahertz (dHz), Hectorhertz (hHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Teraherz (THz), Petaherz (PHz), Exahertz (EHz), Zettaherz (ZHz) and Yottaherz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Madridge J Anal Sci Instrum, 2 (1): 41–46, 2017.

170. Alireza Heidari, “Uranocene (U(C3H3)2) and Bis (Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe(COT)2)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Chemistry Reports, Vol. 1, Iss. 2, Pages 1–16, 2018.

187. Alireza Heidari, “Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCarboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchroclytron Radiations”, Glob Imaging Insights, Volume 3 (4): 1–8, 2018.

